Skip to main content
Log in

Effects of neuromuscular fatigue on the electromechanical delay of the leg extensors and flexors in young and old men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the effects of a fatigue-inducing bout of submaximal, intermittent isometric contractions on the electromechanical delay (EMD) of the leg extensors and flexors in young and old men.

Methods

Twenty young (mean ± SD: age = 25 ± 2.8 years) and sixteen old (age = 70.8 ± 3.8) recreationally active men performed maximal voluntary contractions (MVCs) followed by a fatigue-inducing protocol consisting of intermittent isometric contractions of the leg extensors or flexors using a 0.6 duty cycle (6 s contraction, 4 s relaxation) at 60 % of MVC until volitional fatigue. MVCs were again performed at 0, 7, 15, and 30 min post fatigue. A three-way mixed factorial ANOVA was used to analyze the EMD data.

Results

There was a two-way muscle × time interaction (P = 0.039) where the EMD of the leg flexors was greater (P = 0.001–0.034) compared with baseline at all post fatigue time periods, but was only greater at immediately post fatigue for the extensors (P = 0.001). A significant two-way interaction for muscle × age (P = 0.009) revealed that the EMD was greater (P = 0.003) for the extensors for the old compared with the young men, but not different for the flexors (P = 0.506).

Conclusions

These findings showed differential fatigue-induced EMD recovery patterns between the leg extensors and flexors with the flexors being slower to recover and also that age-related increases of EMD are muscle group specific. The sustained increased EMD of the flexors during recovery may have important injury and performance implications in a variety of populations and settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allman BL, Rice CL (2001) Incomplete recovery of voluntary isometric force after fatigue is not affected by old age. Muscle Nerve 24(9):1156–1167

    Article  PubMed  CAS  Google Scholar 

  • Allman BL, Rice CL (2002) Neuromuscular fatigue and aging: central and peripheral factors. Muscle Nerve 25(6):785–796

    Article  PubMed  Google Scholar 

  • Badier M, Guillot C, Danger C, Tagliarini F, Jammes Y (1999) M-wave changes after high- and low-frequency electrically induced fatigue in different muscles. Muscle Nerve 22(4):488–496

    Article  PubMed  CAS  Google Scholar 

  • Barry BK, Warman GE, Carson RG (2005) Age-related differences in rapid muscle activation after rate of force development training of the elbow flexors. Exp Brain Res 162(1):122–132

    Article  PubMed  Google Scholar 

  • Bell DG, Jacobs I (1986) Electro-mechanical response times and rate of force development in males and females. Med Sci Sports Exerc 18(1):31–36

    PubMed  CAS  Google Scholar 

  • Bennell K, Wajswelner H, Lew P, Schall-Riaucour A, Leslie S, Plant D, Cirone J (1998) Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med 32(4):309–314

    Article  PubMed  CAS  Google Scholar 

  • Bento PCB, Pereira G, Ugrinowitsch C, Rodacki ALF (2010) Peak torque and rate of torque development in elderly with and without fall history. Clin Biomech 25(5):450–454

    Article  Google Scholar 

  • Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7(9):691–699

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E, Vollestad NK (1986) Fatigue of submaximal static contractions. Acta Physiol Scand Suppl 556:137–148

    PubMed  CAS  Google Scholar 

  • Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL (2001) Effect of aging on fatigue characteristics of elbow flexor muscles during sustained submaximal contraction. J Appl Physiol (Bethesda, Md: 1985) 91(6):2654–2664

    CAS  Google Scholar 

  • Blackburn JT, Bell DR, Norcross MF, Hudson JD, Engstrom LA (2009) Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol 19(5):e362

    Article  PubMed  Google Scholar 

  • Boncompagni S, d’Amelio L, Fulle S, Fanò G, Protasi F (2006) Progressive disorganization of the excitation–contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: a possible role in the decline of muscle performance. J Gerontol Ser A Biol Sci Med Sci 61(10):995–1008

    Article  Google Scholar 

  • Cavanagh PR, Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol 42(3):159–163

    Article  CAS  Google Scholar 

  • Chen TC, Lin KY, Chen HL, Lin MJ, Nosaka K (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol 111(2):211–223

    Article  PubMed  Google Scholar 

  • Clarkson PM, Kroll W (1978) Practice effects on fractionated response time related to age and activity level. J Mot Behav 10(4):275–286

    PubMed  CAS  Google Scholar 

  • Delecluse C (1997) Influence of strength training on sprint running performance. Current findings and implications for training. Sports Med 24(3):147–156

    Article  PubMed  CAS  Google Scholar 

  • Duchateau J, Hainaut K (1985) Electrical and mechanical failures during sustained and intermittent contractions in humans. J Appl Physiol 58(3):942–947

    PubMed  CAS  Google Scholar 

  • Fitts RH (2006) The muscular system: fatigue processes. ACSM’s advanced exercise physiology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Garrett WE, Califf JC, Bassett FH (1984) Histochemical correlates of hamstring injuries. Am J Sports Med 12(2):98–103

    Article  PubMed  Google Scholar 

  • Green HJ (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15(3):247–256

    Article  PubMed  CAS  Google Scholar 

  • Hagood S, Solomonow M, Baratta R, Zhou BH, D’Ambrosia R (1990) The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. Am J Sports Med 18(2):182–187

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen K, Komi PV (1983) Electromyographic and mechanical characteristics of human skeletal muscle during fatigue under voluntary and reflex conditions. Electroencephalogr Clin Neurophysiol 55(4):436–444

    Article  PubMed  Google Scholar 

  • Herda TJ, Walter AA, Costa PB, Cramer JT (2012) The effects of a doublet stimulus and pre-tension force level on the electromechanical delay. J Strength Cond Res [Epub ahead of print]

  • Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hagg G (1999) SENIAM European recommendations for surface electromyography: results of the SENIAM Project. Roessingh Research and Development, Enschede

    Google Scholar 

  • Hill AV (1950) The series elastic component of muscle. Proc R Soc Lond B Biol Sci 137(887):273–280

    Article  PubMed  CAS  Google Scholar 

  • Howatson G (2010) The impact of damaging exercise on electromechanical delay in biceps brachii. J Electromyogr Kinesiol 20(3):477–481

    Article  PubMed  Google Scholar 

  • Jamurtas AZ, Theocharis V, Tofas T, Tsiokanos A, Yfanti C, Paschalis V, Koutedakis Y, Nosaka K (2005) Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur J Appl Physiol 95(2–3):179–185

    Article  PubMed  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156(3):265–270

    Article  PubMed  CAS  Google Scholar 

  • Kahya MC, Yavuz SU, Turker KS (2010) Cutaneous silent period in human FDI motor units. Exp Brain Res 205(4):455–463

    Article  PubMed  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol Ser A Biol Sci Med Sci 50(Spec No):11–16

    Google Scholar 

  • Maganaris CN (2002) Tensile properties of in vivo human tendinous tissue. J Biomech 35(8):1019–1027

    Article  PubMed  Google Scholar 

  • Mercer TH, Gleeson NP, Claridge S, Clement S (1998) Prolonged intermittent high intensity exercise impairs neuromuscular performance of the knee flexors. Eur J Appl Physiol 77(6):560–562

    Article  CAS  Google Scholar 

  • Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13(6):376–392

    Article  PubMed  CAS  Google Scholar 

  • Miller RG, Kent-Braun JA, Sharma KR, Weiner MW (1995) Mechanisms of human muscle fatigue. Quantitating the contribution of metabolic factors and activation impairment. Adv Exp Med Biol 384:195–210

    Article  PubMed  CAS  Google Scholar 

  • Minshull C, Gleeson N, Walters-Edwards M, Eston R, Rees D (2007) Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females. Eur J Appl Physiol 100(4):469–478

    Article  PubMed  Google Scholar 

  • Minshull C, Eston R, Bailey A, Rees D, Gleeson N (2012a) Repeated exercise stress impairs volitional but not magnetically evoked electromechanical delay of the knee flexors. J Sports Sci 30(2):217–225

    Article  PubMed  Google Scholar 

  • Minshull C, Eston R, Rees D, Gleeson N (2012b) Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue. J Sports Sci 30(10):1015–1024

    Article  PubMed  Google Scholar 

  • Mitchell C, Cohen R, Dotan R, Gabriel D, Klentrou P, Falk B (2011) Rate of muscle activation in power-and endurance-trained boys. Int J Sports Physiol Perform 6(1):94

    PubMed  Google Scholar 

  • Morse CI, Thom JM, Birch KM, Narici MV (2005) Tendon elongation influences the amplitude of interpolated doublets in the assessment of activation in elderly men. J Appl Physiol 98(1):221–226

    Article  PubMed  Google Scholar 

  • Nilsson J, Tesch P, Thorstensson A (1977) Fatigue and EMG of repeated fast voluntary contractions in man. Acta Physiol Scand 101(2):194–198

    Article  PubMed  CAS  Google Scholar 

  • Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F (2009) Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol 106(6):1970–1975

    Article  PubMed  Google Scholar 

  • Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Jt Surg Am 66(3):344–352

    CAS  Google Scholar 

  • Ochala J, Lambertz D, Van Hoecke J, Pousson M (2005) Effect of strength training on musculotendinous stiffness in elderly individuals. Eur J Appl Physiol 94(1–2):126–133

    Article  PubMed  Google Scholar 

  • Pijnappels M, van der Burg PJ, Reeves ND, van Dieën JH (2008) Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol 102(5):585–592

    Article  PubMed  Google Scholar 

  • Rack PM, Ross HF, Thilmann AF, Walters DK (1983) Reflex responses at the human ankle: the importance of tendon compliance. J Physiol 344:503–524

    PubMed  CAS  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548(Pt 3):971–981

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Sasaki T, Ishii N (2011) Acceleration and force reveal different mechanisms of electromechanical delay. Med Sci Sports Exerc 43(7):1200–1206

    Article  PubMed  Google Scholar 

  • Sjøgaard G (1990) Exercise-induced muscle fatigue: the significance of potassium. Acta Physiol Scand Suppl 593:1–63

    PubMed  Google Scholar 

  • Thompson BJ, Ryan ED, Sobolewski EJ, Smith DB, Conchola EC, Akehi K, Buckminster T (2012) Can maximal and rapid isometric torque characteristics predict playing level in division I American collegiate football players? J Strength Cond Res 27(3):655–661

    Google Scholar 

  • Thompson BJ, Ryan ED, Sobolewski EJ, Conchola EC, Cramer JT (2013a) Age related differences in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-aged and old men. Exp Gerontol 48(2):277–282

    Article  PubMed  Google Scholar 

  • Thompson BJ, Ryan ED, Sobolewski EJ, Smith DB, Akehi K, Conchola EC, Buckminster T (2013b) Relationships between rapid isometric torque characteristics and vertical jump performance in Division I collegiate American football players: Influence of body mass normalization. J Strength Cond Res [Epub ahead of print]

  • Thorlund JB, Michalsik LB, Madsen K, Aagaard P (2008) Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand J Med Sci Sports 18(4):462–472

    Article  PubMed  CAS  Google Scholar 

  • Twist C, Gleeson N, Eston R (2008) The effects of plyometric exercise on unilateral balance performance. J Sports Sci 26(10):1073–1080

    Article  PubMed  Google Scholar 

  • Valour D, Pousson M (2003) Compliance changes of the series elastic component of elbow flexor muscles with age in humans. Pflugers Arch Eur J Physiol 445(6):721–727

    CAS  Google Scholar 

  • Viitasalo JT, Komi PV (1981) Interrelationships between electromyographic, mechanical, muscle structure and reflex time measurements in man. Acta Physiol Scand 111(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74(2):219–227

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261(2 Pt 1):C195–C209

    PubMed  CAS  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  PubMed  Google Scholar 

  • Winter EM, Brookes FB (1991) Electromechanical response times and muscle elasticity in men and women. Eur J Appl Physiol 63(2):124–128

    Article  CAS  Google Scholar 

  • Zhou S (1996) Acute effect of repeated maximal isometric contraction on electromechanical delay of knee extensor muscle. J Electromyogr Kinesiol 6(2):117–127

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Lawson DL, Morrison WE, Fairweather I (1995a) Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. Eur J Appl Physiol 70(2):138–145

    Article  CAS  Google Scholar 

  • Zhou S, Lawson DL, Morrison WE, Fairweather I (1995b) Electromechanical delay of knee extensors: the normal range and the effects of age and gender. J Hum Mov Stud 28(3):127–146

    Google Scholar 

  • Zhou S, McKenna MJ, Lawson DL, Morrison WE, Fairweather I (1996) Effects of fatigue and sprint training on electromechanical delay of knee extensor muscles. Eur J Appl Physiol 72(5–6):410–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Thompson.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conchola, E.C., Thompson, B.J. & Smith, D.B. Effects of neuromuscular fatigue on the electromechanical delay of the leg extensors and flexors in young and old men. Eur J Appl Physiol 113, 2391–2399 (2013). https://doi.org/10.1007/s00421-013-2675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2675-y

Keywords

Navigation