Skip to main content
Log in

Physiological responses during linear periodized training in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study was undertaken to characterize the effects of the linear periodized training in rats on aerobic and anaerobic performance, glycogen concentration in soleus, gastrocnemius and liver, hormones concentrations (testosterone and corticosterone), enzymes and metabolites (creatine kinase, lactate dehydrogenase, creatinine, uric acid and urea) as well as antioxidant system (catalase, superoxide dismutase and sulfhydryl groups) after basic, specific and taper periods. Seventy male Wistar rats were randomly separated in two groups: control/sedentary (CT, n = 40) and linear periodized training (LPT, n = 30). The LPT was carried out during a period of 12 weeks (w) with frequency of 6 days/week. The training period was subdivided in three mesocycles: basic (6 weeks), specific (4.5 weeks) and taper (1.5 weeks). The real volume of the training obtained in LPT reduced 7% in relation to the estimated volume. The anaerobic index in LPT after basic and taper was higher than CT in respective period but unchanged intra-group during mesocycles. The aerobic performance in LPT was higher than CT after basic, specific and taper. The creatine kinase and catalase reduced after the taper period in relation to CT and baseline. The glycogen stores in soleus increased after basic in relation to CT. The liver glycogen concentration increased after taper in relation to basic and specific period as well in comparison to CT. In conclusion, the stress biomarkers reduced in taper period in order to increase the aerobic and anaerobic performance in relation to CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American College of Sports Medicine (2002) Position stand on progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380

    Article  Google Scholar 

  • Ariano MA, Armstrong PB, Edgerton VP (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21:51–55

    Google Scholar 

  • Birren JE, Kay H (1958) Swimming speed of the albino rat: I age and sex differences. J Gerontol 13:374–377

    PubMed  CAS  Google Scholar 

  • Bocalini DS, Carvalho EV, de Sousa AF, Levy RF, Tucci PJ (2010) Exercise training-induced enhancement in myocardial mechanics is lost after 2 weeks of detraining in rats. Eur J Appl Physiol 109:909–914

    Article  PubMed  Google Scholar 

  • Booth FW, Laye MJ, Spangenburg EE (2010) Gold standards for scientists who are conducting animal-based exercise studies. J Appl Physiol 108:219–221

    Article  PubMed  Google Scholar 

  • Botezelli JD, Mora RF, Dalia RA, Moura LP, Cambri LT, Ghezzi AC, Voltarelli FA, Mello MA (2010) Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids Health Dis 14(9):116

    Article  Google Scholar 

  • Brink MS, Nederhof E, Visscher C, Schmikli SL, Lemmink KA (2010) Monitoring load, recovery, and performance in young elite soccer players. J Strength Cond Res 24:597–603

    Article  PubMed  Google Scholar 

  • Cambri LT, Dalia RA, Ribeiro C, Rostom de Mello MA (2010) Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet. Appl Physiol Nutr Metab 35:490–497

    Article  PubMed  CAS  Google Scholar 

  • Caperuto EC, dos Santos RV, Mello MT, Costa Rosa LF (2009) Effect of endurance training on hypothalamic serotonin concentration and performance. Clin Exp Pharmacol Physiol 36:189–191

    Article  PubMed  CAS  Google Scholar 

  • Carvalho JF, Masuda MO, Pompeu FAMS (2005) Method for diagnosis and control of aerobic training in rats based on lactate threshold. Comp Biochem Physiol A 140:409–413

    Article  Google Scholar 

  • Chimin P, de Araujo GG, Manchado FB, Gobatto CA (2009) Critical load during continuous and discontinuous training in swimming. Wistar rats 5:45–58

    Google Scholar 

  • Cohen D (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Contarteze RVL, Manchado FB, Gobatto CA, Mello MAR (2008) Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp Biochem Physiol A Mol Integr Physiol 151:415–422

    Article  PubMed  Google Scholar 

  • Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20:249–254

    Article  PubMed  CAS  Google Scholar 

  • Costill DL, Thomas R, Robergs RA, Pascoe D, Lambert C, Barr S, Fink WJ (1991) Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc 23:371–377

    PubMed  CAS  Google Scholar 

  • de Araujo GG, Papoti M, Manchado FB, Mello MA, Gobatto CA (2007) Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp Biochem Physiol A Mol Integr Physiol 148:888–892

    Article  PubMed  Google Scholar 

  • de Mello MA, de Souza CT, Braga LR, dos Santos JW, Ribeiro IA, Gobatto CA (2001) Glucose tolerance and insulin action in monosodium glutamate (MSG) obese exercise-trained rats. Physiol Chem Phys Med NMR 33:63–71

    PubMed  Google Scholar 

  • de Souza CT, Nunes WM, Gobatto CA, de Mello MA (2003) Insulin secretion in monosodium glutamate (MSG) obese rats submitted to aerobic exercise training. Physiol Chem Phys Med NMR 35:43–53

    PubMed  Google Scholar 

  • Dubois B, Gilles KA, Hamilton JK, Rebers PA (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 8:350–356

    Article  Google Scholar 

  • Fitts RH, Costill DL, Gardetto PR (1989) Effect of swim exercise training on human muscle fiber function. J Appl Physiol 66:465–475

    PubMed  CAS  Google Scholar 

  • Fry RW, Morton AR, Garcia-Webb P, Crawford GP, Keast D (1992) Biological responses to overload training in endurance sports. Eur J Appl Physiol Occup Physiol 64:335–344

    Article  PubMed  CAS  Google Scholar 

  • García-López D, Häkkinen K, Cuevas MJ, Lima E, Kauhanen A, Mattila M, Sillanpää E, Ahtiainen JP, Karavirta L, Almar M, González-Gallego J (2007) Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men. Scand J Med Sci Sports 17:595–604

    Article  PubMed  Google Scholar 

  • García-Pallarés J, García-Fernández M, Sánchez-Medina L, Izquierdo M (2010) Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol 110:99–107

    Article  PubMed  Google Scholar 

  • Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130:21–27

    Article  PubMed  CAS  Google Scholar 

  • Gomes RJ, de Oliveira CA, Ribeiro C, Mota CS, Moura LP, Tognoli LM, Leme JA, Luciano E, de Mello MA (2009) Effects of exercise training on hippocampus concentrations of insulin and IGF-1 in diabetic rats. Hippocampus 19:981–987

    Article  PubMed  CAS  Google Scholar 

  • Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34:967–981

    Article  PubMed  Google Scholar 

  • Hao L, Wang Y, Duan Y, Bu S (2010) Effects of treadmill exercise training on liver fat accumulation and estrogen receptor alpha expression in intact and ovariectomized rats with or without estrogen replacement treatment. Eur J Appl Physiol 109:879–886

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves M (2004) Muscle glycogen and metabolic regulation. Proc Nutr Soc 63:217–220

    Article  PubMed  CAS  Google Scholar 

  • Hedelin R, Kentta G, Wilklund U, Wiklund U, Bjerle P, Henriksson-Larsén K (2000) Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 32:1480–1484

    Article  PubMed  CAS  Google Scholar 

  • Issurin VB (2008) Block periodization versus traditional training theory: a review. J Sports Med Phys Fit 48:65–75

    CAS  Google Scholar 

  • Issurin VB (2010) New horizons for the methodology and physiology of training periodization. Sports Med 40:189–206

    Article  PubMed  Google Scholar 

  • Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292

    Article  PubMed  CAS  Google Scholar 

  • Kostaropoulos IA, Nikolaidis MG, Jamurtas AZ, Ikonomou GV, Makrygiannis V, Papadopoulos G, Kouretas D (2006) Comparison of the blood redox status between long-distance and short-distance runners. Physiol Res 55:611–616

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Ratamess N, Fry AC, Triplett-McBride T, Koziris LP, Bauer JA, Lynch JM, Fleck SJ (2000) Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. Am J Sports Med 28:626–633

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Nindl BC, Ratamess NA, Gotshalk LA, Volek JS, Fleck SJ, Newton RU, Hakkinen K (2004) Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sport Exerc 36:697–708

    Google Scholar 

  • Kubukeli ZN, Noakes TD, Dennis SC (2002) Training techniques to improve endurance exercise performances. Sports Med 32:489–509

    Article  PubMed  Google Scholar 

  • Lamberts RP, Rietjens GJ, Tijdink HH, Noakes TD, Lambert MI (2010) Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist. Eur J Appl Physiol 108:183–190

    Article  PubMed  Google Scholar 

  • Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC (2007) Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev 128:267–275

    Article  PubMed  CAS  Google Scholar 

  • Laursen SH, Paul B, Marsh SA, Jenkins DG, Coombes JS (2007) Manipulating training intensity and volume in already well-trained rats: effect on skeletal muscle oxidative and glycolytic enzymes and buffering capacity. Appl Physiol Nutr Metab 32:434–442

    Google Scholar 

  • Lee SH, Kim HJ, Mun JS, Oh HC, Lee HW, Choi CH, Kim JW, Do JH, Kim JG, Chang SK, Kim MK (2008) A case of primary hepatic Burkitt’s lymphoma. Korean J Gastroenterol 51:259–264

    PubMed  Google Scholar 

  • Lehmann M, Dickhuth HH, Gendrisch G, Lazar W, Thum M, Kaminski R, Aramendi JF, Peterke E, Wieland W, Keul J (1991) Training-overtraining. A prospective, experimental study with experienced middle- and long-distance runners. Int J Sports Med 12:444–452

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Gastmann U, Petersen KG, Bachl N, Seidel A, Khalaf AN, Fischer S, Keul J (1992) Training overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. Br J Sports Med 26:233–242

    Article  PubMed  CAS  Google Scholar 

  • Leme JA, Silveira RF, Gomes RJ, Moura RF, Sibuya CA, Mello MA, Luciano E (2009) Long-term physical training increases liver IGF-I in diabetic rats. Growth Horm IGF Res 19:262–266

    Article  PubMed  CAS  Google Scholar 

  • Maglischo EW (2003) Swimming fastest. Human kinetics

  • Manchado FB, Gobatto CA, Voltarelli FA, Mello MAR (2006) Nonexhaustive test for aerobic capacity determination in swimming rats. Appl Physiol Nutr Metab 31:731–736

    Article  Google Scholar 

  • Matveyev LP (1981) Fundamental of Sport Training. Progress Publisher, Moscow

    Google Scholar 

  • McArdle WD, Montoye HJ (1966) Reliability of exhaustive swimming in the laboratory rat. J Appl Physiol 21:1431–1434

    PubMed  CAS  Google Scholar 

  • Meier GW (1964) Differences in maze performance as a function of age and strain of housemice. J Comp Physiol Psychol 58:418–422

    Article  PubMed  CAS  Google Scholar 

  • Motoo Y, Ohta H, Okai T, Sawabu N (1991) Adult-onset Still’s disease: hepatic involvement and various serum markers relating to the disease activity. Jpn J Med 30:247–250

    Article  PubMed  CAS  Google Scholar 

  • Mujika I, Padilla S (2003) Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc 35:1182–1187

    Article  PubMed  Google Scholar 

  • Mujika I, Chatard JC, Busso T, Geyssant A, Barale F, Lacoste L (1995) Effects of training on performance in competitive swimming. Can J Appl Physiol 20:395–406

    Article  PubMed  CAS  Google Scholar 

  • Nakatani A, Han DH, Hansen PA, Nolte LA, Host HH, Hickner RC, Holloszy JO (1997) Effect of endurance exercise training on muscle glycogen supercompensation in rats. J Appl Physiol 82:711–715

    PubMed  CAS  Google Scholar 

  • Papoti M, Martins LE, Cunha SA, Zagatto AM, Gobatto CA (2007) Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J Strength Cond Res 21:538–542

    PubMed  Google Scholar 

  • Pimenta Ada S, Lambertucci RH, Gorjão R, Silveira Ldos R, Curi R (2007) Effect of a single session of electrical stimulation on activity and expression of citrate synthase and antioxidant enzymes in rat soleus muscle. Eur J Appl Physiol 102:119–126

    Article  PubMed  Google Scholar 

  • Purvis D, Gonsalves S, Deuster PA (2010) Physiological and psychological fatigue in extreme conditions: overtraining and elite athletes. PM R 2:442–450

    Article  PubMed  Google Scholar 

  • Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16:49–56

    Article  PubMed  Google Scholar 

  • Smith MF, Balmer J, Coleman DA, Bird SR, Davison RC (2002) Method of lactate elevation does not affect the determination of the lactate minimum. Med Sci Sports Exerc 34:1744–1749

    Article  PubMed  CAS  Google Scholar 

  • Snyder AC (1998) Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc 30:1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Snyder AC, Kuipers H, Cheng B, Servais R, Fransen E (1995) Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc 27:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Soares de Alencar Mota C, Ribeiro C, de Araújo GG, de Araújo MB, de Barros Manchado-Gobatto F, Voltarelli FA, de Oliveira CA, Luciano E, de Mello MA (2008) Exercise training in the aerobic/anaerobic metabolic transition prevents glucose intolerance in alloxan-treated rats. BMC Endocr Disord 2:8–11

    Google Scholar 

  • Tegtbur U, Busse MW, Braumann KM (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc 25:620–627

    PubMed  CAS  Google Scholar 

  • Vandenberghe K, Hespel P, Vanden Eynde B, Lysens R, Richter EA (1995) No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc 27:1278–1283

    PubMed  CAS  Google Scholar 

  • Vandenberghe K, Richter EA, Hespel P (1999) Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiol Scand 165:307–314

    Article  PubMed  CAS  Google Scholar 

  • Voltarelli FA, Gobatto CA, Mello MAR (2002) Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res 35:1–6

    Article  Google Scholar 

  • Young A (2005) Effects on plasma glucose and lactate. Adv Pharmacol 52:193–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP (04/01205-6; 06/58411-2) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Alexandre Gobatto.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Araujo, G.G., Papoti, M., dos Reis, I.G.M. et al. Physiological responses during linear periodized training in rats. Eur J Appl Physiol 112, 839–852 (2012). https://doi.org/10.1007/s00421-011-2020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2020-2

Keywords

Navigation