Skip to main content
Log in

Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of creatine supplementation on homocysteine (Hcy) metabolism after acute aerobic and anaerobic exercise. A total of 112 Wistar rats were divided into four groups: aerobic exercise (A), aerobic exercise plus creatine supplementation (ACr), anaerobic exercise (An), and anaerobic exercise plus creatine-supplemented (AnCr). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1 h swimming with 4% of total body weight load) or an acute intense anaerobic exercise bout (6 × 30-s vertical jumps into the water with a 30-s rest between jumps, with 50% of total body weight load). The animals were killed before (pre) and at 0, 2, and 6 h (n = 8) after acute exercise. Plasma Hcy concentration increased significantly (P < 0.05) up to 2 h after anaerobic exercise (An group: pre 8.7 ± 1.2, 0 h 13.2 ± 2.3, 2 h 13.5 ± 4.2, and 6 h 12.1 ± 2.2, μmol/l). The same did not occur in acute aerobic exercised animals. Nevertheless, creatine supplementation significant decreased (P < 0.05) homocysteine concentration independent of exercise intensity (AnCr group: pre 17%, 0 h 80%, 2 h 107%, and 6 h 48%; ACr group: pre 17%, 0 h 19%, 2 h 28%, and 6 h 27%). Increased S-adenosylhomocysteine was also found in the An group. In conclusion, acute intense anaerobic exercise increased plasma Hcy concentration. On the other hand, creatine supplementation decreased plasma Hcy independent of exercise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Müller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67:1262–1264

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  PubMed  CAS  Google Scholar 

  • De Crée C, Whiting PH, Cole H (2000) Interactions between homocyst(e)ine and nitric oxide during acute submaximal exercise in adult males. Int J Sports Med 21(4):256–262

    Article  PubMed  Google Scholar 

  • Deminice R, Portari GV, Vannucchi H, Jordao AA (2009) Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br J Nutr 102:110–116

    Article  PubMed  CAS  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    PubMed  CAS  Google Scholar 

  • Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293:F1799–F1804

    Article  PubMed  CAS  Google Scholar 

  • Harbor-Gonçalves L, Vaz LS, Bezzi M (2005) Associação entre níveis plasmáticos de homocisteína e acidente vascular cerebral isquêmico. Arq Neuropsiquiatr 63:97–103

    Article  Google Scholar 

  • Herrmann M, Schorr H, Obeid R, Scharhag J, Urhausen A, Kindermann W, Herrmann W (2003a) Homocysteine increases during endurance exercise. Clin Chem Lab Med 41:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, Wilkinson J, Schorr H, Obeid R, Georg T, Urhausen A, Scharhag J, Kindermann W, Herrmann W (2003b) Comparison of the influence of volume-oriented training and high-intensity interval training on serum homocysteine and its cofactors in young, healthy swimmers. Clin Chem Lab Med 41:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Joubert LM, Manore MM (2006) Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab 16(4):341–361

    PubMed  CAS  Google Scholar 

  • König D, Bissé E, Deibert P, Müller HM, Wieland H, Berg A (2003) Influence of training volume and acute physical exercise on the homocysteine levels in endurance-trained men: interactions with plasma folate and vitamin B12. Ann Nutr Metab 47:114–118

    Article  PubMed  Google Scholar 

  • Korzun WJ (2004) Oral creatine supplements lower plasma homocysteine concentrations in humans. Clin Lab Sci 17(2):102–106

    PubMed  Google Scholar 

  • Likogianni V, Janel N, Ledru A, Beaune P, Paul JL, Demuth K (2006) Thiol compounds metabolism in mice, rats and humans: comparative study and potential explanation of rodents protection against vascular diseases. Clin Chim Acta 372:140–146

    Article  PubMed  CAS  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Real JT, Merchante A, Gómez JL, Chaves FJ, Ascaso JF, Carmena R (2005) Effects of marathon running on plasma total homocysteine concentrations. Nutr Metab Cardiovasc Dis 15:134–139

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 23(11):1939–1951

    Google Scholar 

  • Rennie MJ, Tipton KD (2000) Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 20:457–483

    Article  PubMed  CAS  Google Scholar 

  • Sotgia S, Carru C, Caria MA, Tadolini B, Deiana L, Zinellu A (2007) Acute variations in homocysteine levels are related to creatine changes induced by physical activity. Clin Nutr 26:444–449

    Google Scholar 

  • Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT (2001) Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 281:E1095–E1100

    PubMed  CAS  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    PubMed  CAS  Google Scholar 

  • Steenge GR, Verhoef P, Greenhaff PL (2001) The effect of creatine and resistance training on plasma homocysteine concentration in healthy volunteers. Arch Intern Med 161:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Taes YE, Delanghe JR, De Vriese AS, Rombait R, Vam Camp J, Lameire NH (2003) Creatine supplementation decrease homocysteine in an animal model of uremia. Kidney Int 64:1331–1337

    Article  PubMed  CAS  Google Scholar 

  • Taes YE, Delanghe JR, De Bacquer D, Langlois M, Stevens L, Geerolf I, Lameire NH, De Vriese AS (2004) Creatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patients. Kidney Int 66:2422–2428

    Article  PubMed  CAS  Google Scholar 

  • Van Hall G, Saltin B, Wagenmakers AJ (1999) Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans. Clin Sci 97(5):557–567

    Article  PubMed  Google Scholar 

  • Venta R, Cruz E, Valcárcel G, Terrados N (2009) Plasma vitamins, amino acids, and renal function in postexercise hyperhomocysteinemia. Med Sci Sports Exerc 41:1645–1651

    PubMed  Google Scholar 

  • Voltarelli FA, Gobatto CA, de Mello MA (2002) Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res 35(11):1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Wijekoon EP, Brosnan ME, Brosnan JT (2007) Homocysteine metabolism in diabetes. Biochem Soc Trans 35:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Wright M, Francis K, Cornwell P (1998) Effect of acute exercise on plasma homocysteine. J Sports Med Phys Fitness 38(3):262–265

    PubMed  CAS  Google Scholar 

  • Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    Article  PubMed  CAS  Google Scholar 

  • Zinellu A, Sotgia S, Caria MA, Tangianu F, Casu G, Deiana L, Carru C (2007) Effect of acute exercise on low molecular weight thiols in plasma. Scand J Med Sci Sports 17(4):452–456

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (Protocol 07/08099-5).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Deminice.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deminice, R., Vannucchi, H., Simões-Ambrosio, L.M. et al. Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats. Eur J Appl Physiol 111, 2663–2670 (2011). https://doi.org/10.1007/s00421-011-1891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1891-6

Keywords

Navigation