Skip to main content

Advertisement

Log in

An energy balance of the 200 m front crawl race

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to determine the relative contribution of the aerobic (Aer), anaerobic lactic (AnL) and alactic (AnAl) energy sources during each of the four laps of a 200 m front crawl race. Additionally, energy cost (C) and arm stroke efficiency were also computed. Ten international swimmers performed a 200 m front crawl swim, as well as 50, 100, and 150 m at the 200 m pace. Oxygen consumption was measured during the 200 m swim and blood samples were collected before and after each swim; the C of swimming was calculated as the ratio of E tot to distance (where E tot = Aer + AnL + AnAl). Arm stroke efficiency was calculated by kinematic analysis as the speed of center of mass to the ratio of 3D hand speed. For the 200 m the contributions were 65.9% (Aer), 13.6% (AnL), and 20.4% (AnAl) whereas for each lap they were 44.6, 73.2, 83.3 and 66.6% (Aer), 14.1, 5.0, 4.4 and 28.1% (AnL) and 41.3, 21.8, 12.3 and 5.2% (AnAl) for the four laps, respectively. For the 200 m as a whole C was 1.60 kJ m−1 whereas C = 1.71, 1.56, 1.44 and 1.70 kJ m−1 for each consecutive lap, respectively. Arm stroke efficiency ranged from 0.40 to 0.43 and was significantly lower in the last lap as compared to the first (P = 0.002), suggesting the occurrence of fatigue. The decrease in arm stroke efficiency was mirrored by an increase in C as can be expected on theoretical grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander McN (1983) Motion in fluids. In: Animal mechanics. Blackwell, Oxford, pp 183–233

  • Alves F, Gomes-Pereira J, Pereira F (1996) Determinants of energy cost of front crawl and backstroke swimming and competitive performance. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming vii. E & FN Spon, London, pp 185–191

    Google Scholar 

  • Barbosa TM, Keskinen KL, Fernandes R, Colaco P, Lima AB, Vilas-Boas JP (2005) Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol 93(5–6):519–523. doi:10.1007/s00421-004-1251-x

    Article  PubMed  Google Scholar 

  • Barbosa TM, Fernandes RJ, Keskinen KL, Vilas-Boas JP (2008) The influence of stroke mechanics into energy cost of elite swimmers. Eur J Appl Physiol 103(2):139–149. doi:10.1007/s00421-008-0676-z

    Article  PubMed  Google Scholar 

  • Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31p-nmr at the onset of constant-load exercise in humans. J Appl Physiol 73(4):1644–1649

    PubMed  CAS  Google Scholar 

  • Capelli C (1999) Physiological determinants of best performances in human locomotion. Eur J Appl Physiol Occup Physiol 80(4):298–307

    Article  PubMed  CAS  Google Scholar 

  • Capelli C, Pendergast DR, Termin B (1998) Energetics of swimming at maximal speeds in humans. Eur J Appl Physiol Occup Physiol 78(5):385–393

    Article  PubMed  CAS  Google Scholar 

  • Coelho J, Fernandes R, Colaço C, Soares S, Vilas-Boas JP (2008) Kinetics of glycolysis during the short-course 100-m crawl swimming event. J Sports Sci 26(1):5

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Costill DL, Kovaleski J, Porter D, Kirwan J, Fielding R, King D (1985) Energy expenditure during front crawl swimming: Predicting success in middle-distance events. Int J Sports Med 6(5):266–270. doi:10.1055/s-2008-1025849

    Article  PubMed  CAS  Google Scholar 

  • de Leva P (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230. doi:0021929095001786[pii]

    Article  PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7(2):55–72. doi:10.1055/s-2008-1025736

    Article  PubMed  CAS  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90(3–4):420–429. doi:10.1007/s00421-003-0926-z

    Article  PubMed  Google Scholar 

  • di Prampero PE, Pendergast D, Wilson D, Rennie DW (1978) Blood lactic acid concentrations in high velocity swimming. In: Eriksson B, Furberg B (eds) Swimming medicine iv. University Park Press, Baltimore, pp 249–261

    Google Scholar 

  • di Prampero PE, Pendergast D, Zamparo P (2010) Swimming economy (energy cost) and efficiency. In: Seifert L, Chollet D, Mujika I (eds) World book of swimming: from science to performance. Nova Science Publishers, Inc, USA (in press)

  • Fernandes RJ, Billat VL, Cruz AC, Colaco PJ, Cardoso CS, Vilas-Boas JP (2006) Does net energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J Sports Med Phys Fitness 46(3):373–380

    PubMed  CAS  Google Scholar 

  • Fernandes RJ, Keskinen KL, Colaco P, Querido AJ, Machado LJ, Morais PA, Novais DQ, Marinho DA, Vilas Boas JP (2008) Time limit at vo2max velocity in elite crawl swimmers. Int J Sports Med 29(2):145–150. doi:10.1055/s-2007-965113

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo P, Vilas Boas JP, Maia J, Goncalves P, Fernandes RJ (2009) Does the hip reflect the centre of mass swimming kinematics? Int J Sports Med 30(11):779–781. doi:10.1055/s-0029-1234059

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo P, Sousa A, Gonçalves P, Pereira S, Soares S, Vilas-Boas JP, Fernandes RJ (2010) Biophysical analysis of the 200 m front crawl swimming: a case study. In: Kjendlie P, Stallman R, Cabri J (eds) Proceedings of the xith international symposium for biomechanics and medicine in swimming. Norwegian School of Sport Science, Oslo, pp 79–81

    Google Scholar 

  • Fox RW, McDonald AT (1992) Fluid machines. In: Introduction to fluid mechanics. Wiley, New York, pp 544–625

  • Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741

    Article  PubMed  CAS  Google Scholar 

  • Keskinen KL, Rodriguez FA, Keskinen OP (2003) Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming. Scand J Med Sci Sports 13(5):322–329. doi:319[pii]

    Article  PubMed  Google Scholar 

  • Laffite LP, Vilas-Boas JP, Demarle A, Silva J, Fernandes R, Billat VL (2004) Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol 29(Suppl):S17–31

    Google Scholar 

  • Ogita F (2006) Energetics in competitive swimming and its application for training. Port J Sport Sci 6(Suppl 2):117–121

    Google Scholar 

  • Prampero PE, Francescato MP, Cettolo V (2003) Energetics of muscular exercise at work onset: the steady-state approach. Pflugers Arch 445(6):741–746. doi:10.1007/s00424-002-0991-x

    PubMed  CAS  Google Scholar 

  • Reis VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ (2010) Examining the accumulated oxygen deficit method in front crawl swimming. Int J Sports Med 31(6):421–427

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez FA, Mader A (2003) Energy metabolism during 400 and 100-m crawl swimming: computer simulation based on free swimming measurement. In: Chatard J (ed) Biomechanics and medicine in swimming ix. University of Saint-Etienne, Saint-Etienne, pp 373–378

  • Seifert L, Toussaint HM, Alberty M, Schnitzler C, Chollet D (2010) Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Hum Mov Sci 29(3):426–439. doi:10.1016/j.humov.2009.11.003

  • Sousa A, Figueiredo P, Oliveira N, Keskinen KL, Vilas-Boas JP, Fernandes R (2010) Comparison between vo2peak and vo2max at different time intervals. Open Sports Sci J 3:22–24

    Article  Google Scholar 

  • Toussaint HM, Hollander AP (1994) Energetics of competitive swimming. Implications for training programmes. Sports Med 18(6):384–405

    Article  PubMed  CAS  Google Scholar 

  • Toussaint HM, Carol A, Kranenborg H, Truijens MJ (2006) Effect of fatigue on stroking characteristics in an arms-only 100-m front-crawl race. Med Sci Sports Exerc 38(9):1635–1642. doi:10.1249/01.mss.0000230209.53333.31

    Article  PubMed  Google Scholar 

  • Troup JP (1991) Aerobic: anaerobic characteristics of the four competitive strokes. In: Troup JP (ed) International center for aquatic research annual. Studies by the international center for aquatic research (1990–1991). US Swimming Press, Colorado Springs, pp 3–7

    Google Scholar 

  • Vilas-Boas JP (1996) Speed fluctuations and energy cost of different breaststroke techniques. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming vii. E & FN Spon, London, pp 167–171

    Google Scholar 

  • Vilas-Boas JP, Duarte JA (1991) Blood lactate kinetics on 100 m freestyle event. IXth FINA International Aquatic Sports Medicine Congress. Rio de Janeiro

  • Wakayoshi K, D’Acquisto LJ, Cappaert JM, Troup JP (1995) Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med 16(1):19–23. doi:10.1055/s-2007-972957

    Article  PubMed  CAS  Google Scholar 

  • Wakayoshi K, Acquisto J, Cappaert JM, Troup JP (1996) Relationship between metabolic parameters and stroking technique characteristics in front crawl. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming vii. E & FN Spon, London, pp 152–158

    Google Scholar 

  • Zamparo P, Capelli C, Cautero M, Di Nino A (2000) Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur J Appl Physiol 83(6):487–491

    Article  PubMed  CAS  Google Scholar 

  • Zamparo P, Bonifazi M, Faina M, Milan A, Sardella F, Schena F, Capelli C (2005a) Energy cost of swimming of elite long-distance swimmers. Eur J Appl Physiol 94(5–6):697–704. doi:10.1007/s00421-005-1337-0

    Article  PubMed  CAS  Google Scholar 

  • Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE (2005b) An energy balance of front crawl. Eur J Appl Physiol 94(1–2):134–144. doi:10.1007/s00421-004-1281-4

    Article  PubMed  CAS  Google Scholar 

  • Zamparo P, Capelli C, Pendergast D (2010) Energetics of swimming: a historical perspective. Eur J Appl Physiol. doi:10.1007/s00421-010-1433-7

Download references

Acknowledgments

This investigation was supported by grants of Portuguese Science and Technology Foundation (SFRH/BD/38462/2007) (PTDC/DES/101224/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Fernandes.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, P., Zamparo, P., Sousa, A. et al. An energy balance of the 200 m front crawl race. Eur J Appl Physiol 111, 767–777 (2011). https://doi.org/10.1007/s00421-010-1696-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1696-z

Keywords

Navigation