Skip to main content
Log in

Influence of indomethacin on the ventilatory and cerebrovascular responsiveness to hypoxia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Indomethacin (INDO) has the potential to be a useful tool to explore the influence of cerebral blood flow and its responses to CO2 on ventilatory control. However, the effect of INDO on the cerebrovascular and ventilatory response to hypoxia remains unclear; therefore, we examined the effect of INDO on ventilatory and cerebrovascular sensitivity to hypoxia and hypercapnia. We measured end-tidal gases, ventilation \( (\dot{V}_{\text{E}} ), \) and middle cerebral artery velocity (MCAv) before and 90 min following INDO (100 mg) in 12 healthy participants at rest and during hyperoxic hypercapnia and isocapnic hypoxia. Following INDO, resting \( \dot{V}_{\text{E}} \) and end-tidal gases were unaltered (P > 0.05), whilst MCAv was lowered by 25 ± 19% (P < 0.001). INDO ingestion reduced MCAv-CO2 reactivity by 46 ± 29% (2.9 ± 0.9 vs. 1.7 ± 0.9 cm s−1 mmHg−1; P < 0.001) and enhanced the \( \dot{V}_{\text{E}} \)-CO2 sensitivity by 0.5 ± 0.5 L min−1 mmHg−1 (1.9 ± 1.5 vs. 2.3 ± 1.6 L min−1 mmHg−1; P < 0.05). No changes were observed in either the MCAv or \( \dot{V}_{\text{E}} \) responsiveness to isocapnic hypoxia following INDO ingestion (P > 0.05). These findings indicate that INDO does not alter cerebrovascular and ventilatory responsiveness to hypoxia, indicating a preserved peripheral chemoreflex in response to this pharmacological agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    Article  PubMed  CAS  Google Scholar 

  • Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473–R1495

    Article  PubMed  CAS  Google Scholar 

  • Ainslie PN, Barach A, Murrell C, Hamlin M, Hellemans J, Ogoh S (2007) Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol 292:H976–H983

    Article  PubMed  CAS  Google Scholar 

  • Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32:2492–2500

    Article  PubMed  CAS  Google Scholar 

  • Armstead WM (2000) Altered release of prostaglandins contributes to hypoxic/ischemic impairment of NOC/oFQ cerebrovasodilation. Brain Res 859:104–112

    Article  PubMed  CAS  Google Scholar 

  • Benders MJ, Dorrepaal CA, van de Bor M, van Bel F (1995) Acute effects of indomethacin on cerebral hemodynamics and oxygenation. Biol Neonate 68:91–99

    Article  PubMed  CAS  Google Scholar 

  • Bishop CC, Powell S, Rutt D, Browse NL (1986) Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17:913–915

    PubMed  CAS  Google Scholar 

  • Blain GM, Smith CA, Henderson KS, Dempsey JA (2009) Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106:1564–1573

    Article  PubMed  Google Scholar 

  • Brian JE Jr, Moore SA, Faraci FM (1998) Expression and vascular effects of cyclooxygenase-2 in brain. Stroke 29:2600–2606

    PubMed  CAS  Google Scholar 

  • Bruhn H, Fransson P, Frahm J (2001) Modulation of cerebral blood oxygenation by indomethacin: MRI at rest and functional brain activation. J Magn Reson Imaging 13:325–334

    Article  PubMed  CAS  Google Scholar 

  • Burgess KR, Fan JL, Peebles K, Thomas K, Lucas S, Lucas R, Dawson A, Swart M, Shepherd K, Ainslie P (2010) Exacerbation of obstructive sleep apnea by oral indomethacin. Chest 137:707–710

    Article  PubMed  Google Scholar 

  • Chapman RW, Santiago TV, Edelman NH (1979a) Effects of graded reduction of brain blood flow on chemical control of breathing. J Appl Physiol 47:1289–1294

    PubMed  CAS  Google Scholar 

  • Chapman RW, Santiago TV, Edelman NH (1979b) Effects of graded reduction of brain blood flow on ventilation in unanesthetized goats. J Appl Physiol 47:104–111

    PubMed  CAS  Google Scholar 

  • Claassen JA, Zhang R, Fu Q, Witkowski S, Levine BD (2007) Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing. J Appl Physiol 102:870–877

    Article  PubMed  Google Scholar 

  • Coyle MG, Oh W, Stonestreet BS (1993) Effects of indomethacin on brain blood flow and cerebral metabolism in hypoxic newborn piglets. Am J Physiol 264:H141–H149

    PubMed  CAS  Google Scholar 

  • Coyle MG, Oh W, Petersson KH, Stonestreet BS (1995) Effects of indomethacin on brain blood flow, cerebral metabolism, and sagittal sinus prostanoids after hypoxia. Am J Physiol 269:H1450–H1459

    PubMed  CAS  Google Scholar 

  • Cunningham DJ, Hey EN, Patrick JM, Lloyd BB (1963) The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar PO2 and PCO2 in man. Ann N Y Acad Sci 109:756–771

    Article  PubMed  CAS  Google Scholar 

  • Dahan A, Sarton E, Teppema L (2008) Plasticity in the brain: influence of bilateral carotid body resection (bCBR) on central CO2 sensitivity. Adv Exp Med Biol 605:312–316

    Article  PubMed  CAS  Google Scholar 

  • Day TA, Wilson RJ (2009) A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 587:883–896

    Article  PubMed  CAS  Google Scholar 

  • Docherty JC, Wilson TW (1987) Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils. Biochem Biophys Res Commun 148:534–538

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Hagenfeldt L, Law D, Patrono C, Pinca E, Wennmalm A (1983) Effect of prostaglandin synthesis inhibitors on basal and carbon dioxide stimulated cerebral blood flow in man. Acta Physiol Scand 117:203–211

    Article  PubMed  CAS  Google Scholar 

  • Fan JL, Cotter JD, Lucas RA, Thomas K, Wilson L, Ainslie PN (2008) Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration. J Appl Physiol 105:433–445

    Article  PubMed  Google Scholar 

  • Fan JL, Burgess KR, Thomas KN, Peebles KC, Lucas SJ, Lucas RA, Cotter JD, Ainslie PN (2010) Influence of indomethacin on ventilatory and cerebrovascular responsiveness to CO2 and breathing stability: the influence of PCO2 gradients. Am J Physiol Regul Integr Comp Physiol 298:R1648–R1658

    Article  PubMed  CAS  Google Scholar 

  • Fencl V (1986) Acid-base balance in cerebral fluids. In: Fishman AP, Cherniack NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology. Section 3, The respiratory system. American Physiological Society, Bethesda

  • Gardner WN (1980) The pattern of breathing following step changes of alveolar partial pressures of carbon dioxide and oxygen in man. J Physiol 300:55–73

    PubMed  CAS  Google Scholar 

  • Giller CA, Bowman G, Dyer H, Mootz L, Krippner W (1993) Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 32:737–741 (discussion 741–742)

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Nino A, Almaraz L, Gonzalez C (1992) Potentiation by cyclooxygenase inhibitors of the release of catecholamines from the rabbit carotid body and its reversal by prostaglandin E2. Neurosci Lett 140:1–4

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Nino A, Almaraz L, Gonzalez C (1994) In vitro activation of cyclo-oxygenase in the rabbit carotid body: effect of its blockade on [3H]catecholamine release. J Physiol 476:257–267

    PubMed  CAS  Google Scholar 

  • Green RS, Leffler CW, Busija DW, Fletcher AM, Beasley DG (1987) Indomethacin does not alter the circulating catecholamine response to asphyxia in the neonatal piglet. Pediatr Res 21:534–537

    Article  PubMed  CAS  Google Scholar 

  • Hohimer AR, Richardson BS, Bissonnette JM, Machida CM (1985) The effect of indomethacin on breathing movements and cerebral blood flow and metabolism in the fetal sheep. J Dev Physiol 7:217–228

    PubMed  CAS  Google Scholar 

  • Hsu P, Shibata M, Leffler CW (1993) Prostanoid synthesis in response to high CO2 in newborn pig brain microvascular endothelial cells. Am J Physiol 264:H1485–H1492

    PubMed  CAS  Google Scholar 

  • Isozumi K, Fukuuchi Y, Takeda H, Itoh Y (1994) Mechanisms of CBF augmentation during hypoxia in cats: probable participation of prostacyclin, nitric oxide and adenosine. Keio J Med 43:31–36

    PubMed  CAS  Google Scholar 

  • Ivancev V, Bakovic D, Obad A, Breskovic T, Palada I, Joyner MJ, Dujic Z (2009) Effects of indomethacin on cerebrovascular response to hypercapnea and hypocapnea in breath-hold diving and obstructive sleep apnea. Respir Physiol Neurobiol 166:152–158

    Article  PubMed  CAS  Google Scholar 

  • Jansen AH, De Boeck C, Ioffe S, Chernick V (1984) Indomethacin-induced fetal breathing: mechanism and site of action. J Appl Physiol 57:360–365

    PubMed  CAS  Google Scholar 

  • Jensen K, Kjaergaard S, Malte E, Bunemann L, Therkelsen K, Knudsen F (1996) Effect of graduated intravenous and standard rectal doses of indomethacin on cerebral blood flow in healthy volunteers. J Neurosurg Anesthesiol 8:111–116

    Article  PubMed  CAS  Google Scholar 

  • Kastrup A, Happe V, Hartmann C, Schabet M (1999) Gender-related effects of indomethacin on cerebrovascular CO2 reactivity. J Neurol Sci 162:127–132

    Article  PubMed  CAS  Google Scholar 

  • Konig W, Brom J, Schonfeld W, Knoller J, Stuning M (1987) Effect of tenoxicam and indomethacin on the release of histamine, prostaglandin E2 and leukotrienes from various cells. Arzneimittelforschung 37:296–299

    PubMed  CAS  Google Scholar 

  • Kraaier V, Van Huffelen AC, Wieneke GH, Van der Worp HB, Bar PR (1992) Quantitative EEG changes due to cerebral vasoconstriction. Indomethacin versus hyperventilation-induced reduction in cerebral blood flow in normal subjects. Electroencephalogr Clin Neurophysiol 82:208–212

    Article  PubMed  CAS  Google Scholar 

  • Leffler CW, Parfenova H (1997) Cerebral arteriolar dilation to hypoxia: role of prostanoids. Am J Physiol 272:H418–H424

    PubMed  CAS  Google Scholar 

  • Lemmers PM, Toet MC, van Bel F (2008) Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 121:142–147

    Article  PubMed  Google Scholar 

  • Liem KD, Hopman JC, Kollee LA, Oeseburg B (1994) Effects of repeated indomethacin administration on cerebral oxygenation and haemodynamics in preterm infants: combined near infrared spectrophotometry and Doppler ultrasound study. Eur J Pediatr 153:504–509

    PubMed  CAS  Google Scholar 

  • Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55:698–705

    Article  PubMed  CAS  Google Scholar 

  • Markus HS, Vallance P, Brown MM (1994) Differential effect of three cyclooxygenase inhibitors on human cerebral blood flow velocity and carbon dioxide reactivity. Stroke 25:1760–1764

    PubMed  CAS  Google Scholar 

  • McCalden TA, Nath RG, Thiele K (1984) The role of prostacyclin in the hypercapnic and hypoxic cerebrovascular dilations. Life Sci 34:1801–1807

    Article  PubMed  CAS  Google Scholar 

  • McQueen DS, Belmonte C (1974) The effects of prostaglandins E2, A2 and F2 alpha on carotid baroreceptors and chemoreceptors. Q J Exp Physiol Cogn Med Sci 59:63–71

    PubMed  CAS  Google Scholar 

  • Mohan R, Duffin J (1997) The effect of hypoxia on the ventilatory response to carbon dioxide in man. Respir Physiol 108:101–115

    Article  PubMed  CAS  Google Scholar 

  • Mohan RM, Amara CE, Cunningham DA, Duffin J (1999) Measuring central-chemoreflex sensitivity in man: rebreathing and steady-state methods compared. Respir Physiol 115:23–33

    Article  PubMed  CAS  Google Scholar 

  • Mollace V, Muscoli C, Rotiroti D, Nistico G (1997) Spontaneous induction of nitric oxide- and prostaglandin E2-release by hypoxic astroglial cells is modulated by interleukin 1 beta. Biochem Biophys Res Commun 238:916–919

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Suzuki A, Nishiura Y, Yamamoto H, Miyamoto K, Kishi F, Kawakami Y (1987) Effect of brain blood flow on hypoxic ventilatory response in humans. J Appl Physiol 63:1100–1106

    PubMed  CAS  Google Scholar 

  • Nollert G, Mohnle P, Tassani-Prell P, Reichart B (1995) Determinants of cerebral oxygenation during cardiac surgery. Circulation 92:II327–II333

    PubMed  CAS  Google Scholar 

  • Northover BJ (1977) Effect of indomethacin and related drugs on the calcium ion-dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leucocytes in vitro. Br J Pharmacol 59:253–259

    PubMed  CAS  Google Scholar 

  • Noth U, Kotajima F, Deichmann R, Turner R, Corfield DR (2008) Mapping of the cerebral vascular response to hypoxia and hypercapnia using quantitative perfusion MRI at 3 T. NMR Biomed 21:464–472

    Article  PubMed  Google Scholar 

  • Nuttall GA, Cook DJ, Fulgham JR, Oliver WC Jr, Proper JA (1996) The relationship between cerebral blood flow and transcranial Doppler blood flow velocity during hypothermic cardiopulmonary bypass in adults. Anesth Analg 82:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Pandit JJ, Mohan RM, Paterson ND, Poulin MJ (2007) Cerebral blood flow sensitivities to CO2 measured with steady-state and modified rebreathing methods. Respir Physiol Neurobiol 159:34–44

    Article  PubMed  Google Scholar 

  • Parfenova H, Leffler CW (1996) Effects of hypercapnia on prostanoid and cAMP production by cerebral microvascular cell cultures. Am J Physiol 270:C1503–C1510

    PubMed  CAS  Google Scholar 

  • Parfenova H, Shibata M, Zuckerman S, Leffler CW (1994) CO2 and cerebral circulation in newborn pigs: cyclic nucleotides and prostanoids in vascular regulation. Am J Physiol 266:H1494–H1501

    PubMed  CAS  Google Scholar 

  • Parfenova H, Hsu P, Leffler CW (1995a) Dilator prostanoid-induced cyclic AMP formation and release by cerebral microvascular smooth muscle cells: inhibition by indomethacin. J Pharmacol Exp Ther 272:44–52

    PubMed  CAS  Google Scholar 

  • Parfenova H, Zuckerman S, Leffler CW (1995b) Inhibitory effect of indomethacin on prostacyclin receptor-mediated cerebral vascular responses. Am J Physiol 268:H1884–H1890

    PubMed  CAS  Google Scholar 

  • Peebles KC, Richards AM, Celi L, McGrattan K, Murrell CJ, Ainslie PN (2008) Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases. J Appl Physiol 105:1060–1068

    Article  PubMed  Google Scholar 

  • Pickard J, Tamura A, Stewart M, McGeorge A, Fitch W (1980) Prostacyclin, indomethacin and the cerebral circulation. Brain Res 197:425–431

    Article  PubMed  CAS  Google Scholar 

  • Pickles H, Brown MM, Thomas M, Hewazy AH, Redmond S, Zilkha E, Marshall J (1984) Effect of indomethacin on cerebral blood flow, carbon dioxide reactivity and the response to epoprostenol (prostacyclin) infusion in man. J Neurol Neurosurg Psychiatry 47:51–55

    Article  PubMed  CAS  Google Scholar 

  • Pourcyrous M, Leffler CW, Bada HS, Korones SB, Busija DW (1993) Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose. Pediatr Res 34:366–369

    Article  PubMed  CAS  Google Scholar 

  • Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Hayes D Jr, Morgan BJ (2009) Impaired vascular regulation in patients with obstructive sleep apnea: effects of CPAP treatment. Am J Respir Crit Care Med 180(11):1143–1150

    Article  PubMed  Google Scholar 

  • Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678

    PubMed  CAS  Google Scholar 

  • Severinghaus JW (1979) Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 46:599–602

    PubMed  CAS  Google Scholar 

  • St Lawrence KS, Ye FQ, Lewis BK, Weinberger DR, Frank JA, McLaughlin AC (2002) Effects of indomethacin on cerebral blood flow at rest and during hypercapnia: an arterial spin tagging study in humans. J Magn Reson Imaging 15:628–635

    Article  PubMed  Google Scholar 

  • Staessen J, Cattaert A, Fagard R, Lijnen P, Moerman E, De Schaepdryver A, Amery A (1984) Hemodynamic and humoral effects of prostaglandin inhibition in exercising humans. J Appl Physiol 56:39–45

    PubMed  CAS  Google Scholar 

  • ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L (1998) Changes in cerebral blood flow during PaCO2 variations in patients with severe closed head injury: comparison between the Fick and transcranial Doppler methods. J Neurosurg 88:996–1001

    Article  PubMed  CAS  Google Scholar 

  • Therkelsen K, Jensen KA, Freundlich M, Thorshauge H, Bunemann L, Bogeskov Nielsen L (1994) Endothelin-1 and cerebral blood flow: influence of hypoxia, hypercapnia and indomethacin on circulating endothelin levels in healthy volunteers. Scand J Clin Lab Invest 54:441–451

    Article  PubMed  CAS  Google Scholar 

  • Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhaupl KM (1997) Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. Ajnr 18:1929–1934

    PubMed  CAS  Google Scholar 

  • van Bel F, Sola A, Roman C, Rudolph AM (1997) Perinatal regulation of the cerebral circulation: role of nitric oxide and prostaglandins. Pediatr Res 42:299–304

    Article  PubMed  Google Scholar 

  • Wagerle LC, Degiulio PA (1994) Indomethacin-sensitive CO2 reactivity of cerebral arterioles is restored by vasodilator prostaglandin. Am J Physiol 266:H1332–H1338

    PubMed  CAS  Google Scholar 

  • Wang Q, Paulson OB, Lassen NA (1993) Indomethacin abolishes cerebral blood flow increase in response to acetazolamide-induced extracellular acidosis: a mechanism for its effect on hypercapnia? J Cereb Blood Flow Metab 13:724–727

    PubMed  CAS  Google Scholar 

  • Wennmalm A, Eriksson S, Hagenfeldt L, Law D, Patrono C, Pinca E (1983) Effect of prostaglandin synthesis inhibitors on basal and carbon dioxide-stimulated cerebral blood flow in man. Adv Prostaglandin Thromboxane Leukot Res 12:351–355

    PubMed  CAS  Google Scholar 

  • Wennmalm A, Carlsson I, Edlund A, Eriksson S, Kaijser L, Nowak J (1984) Central and peripheral haemodynamic effects of non-steroidal anti-inflammatory drugs in man. Arch Toxicol Suppl 7:350–359

    PubMed  CAS  Google Scholar 

  • Xie A, Skatrud JB, Khayat R, Dempsey JA, Morgan B, Russell D (2005) Cerebrovascular response to carbon dioxide in patients with congestive heart failure. Am J Respir Crit Care Med 172:371–378

    Article  PubMed  Google Scholar 

  • Xie A, Skatrud JB, Morgan B, Chenuel B, Khayat R, Reichmuth K, Lin J, Dempsey JA (2006) Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans. J Physiol 577:319–329

    Article  PubMed  CAS  Google Scholar 

  • Xie A, Skatrud JB, Barczi SR, Reichmuth K, Morgan BJ, Mont S, Dempsey JA (2009) Influence of cerebral blood flow on breathing stability. J Appl Physiol 106:850–856

    Article  PubMed  Google Scholar 

  • Yamashita Y, Murakami Y, Wada N, Togo A, Matsuishi T, Kato H (1999) Effects of indomethacin and hyperventilation on cerebral hemodynamics and oxygenation in newborn piglets. Kurume Med J 46:137–141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. J. Duffin who kindly provided his technical assistance in the rebreathing analysis programme. Special thanks are due to our participants for giving their time for this study. We also extend our thanks to ADInstruments for the use of their laboratory equipment. This study was supported by the Otago Medical Research Foundation, SPARC New Zealand and Peninsula Health Care p/l.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Lin Fan.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, JL., Burgess, K.R., Thomas, K.N. et al. Influence of indomethacin on the ventilatory and cerebrovascular responsiveness to hypoxia. Eur J Appl Physiol 111, 601–610 (2011). https://doi.org/10.1007/s00421-010-1679-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1679-0

Keywords

Navigation