Skip to main content
Log in

The degree of p70S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Regular performance of resistance exercise induces an increase in skeletal muscle mass, however, the molecular mechanisms underlying this effect are not yet fully understood. The purpose of the present investigation was to examine acute changes in molecular signalling in response to resistance exercise involving different training volumes. Eight untrained male subjects carried out one, three and five sets of 6 repetition maximum (RM) in leg press exercise in a random order. Muscle biopsies were taken from the vastus lateralis both prior to and 30 min after each training session and the effect on protein signalling was studied. Phosphorylation of Akt was not altered significantly after any of the training protocols, whereas that of the mammalian target of rapamycin was enhanced to a similar extent by training at all three volumes. The phosphorylation of p70S6 kinase (p70S6k) was elevated threefold after 3 × 6 RM and sixfold after 5 × 6 RM, while the phosphorylation of S6 was increased 30- and 55-fold following the 3 × 6 RM and 5 × 6 RM exercises, respectively. Moreover, the level of the phosphorylated form of the gamma isoform of p38 MAPK was enhanced three to fourfold following each of the three protocols, whereas phosphorylation of ERK1/2 was unchanged 30 min following exercise. These findings indicate that when exercise is performed in a fasted state, the increase in phosphorylation of signalling molecules such as p70S6k and the S6 ribosomal protein in human muscle depends on the exercise volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beachle TR, Earle RW, Wathen D (2000) Resistance training. In: Beachle TR, Earle RW (eds) Essentials of strength training and conditioning. Human Kinetics, Champaign, pp 395–425

    Google Scholar 

  • Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 14 (Suppl 68):1–110

    Google Scholar 

  • Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520

    CAS  PubMed  Google Scholar 

  • Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ (2000) Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 526:663–669

    Article  CAS  PubMed  Google Scholar 

  • Brooke M, Kaiser K (1970) Three “myosin adenosine-triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18:670–672

    CAS  PubMed  Google Scholar 

  • Brooke M, Kaiser K (1979) Muscle fiber types. How many and what kind? Arch Neurol 23:369–379

    Google Scholar 

  • Burgstaller S, Rosner M, Lindengrün C, Henneder M, Siegel N, Valli A, Fuchs C, Hengstschläger M (2009) Tuberin, p27 and mTOR in different cells. Amino Acids 36:297–302

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    CAS  PubMed  Google Scholar 

  • Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S (2005) Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 99:950–956

    Article  CAS  PubMed  Google Scholar 

  • Deldicque L, Theisen D, Francaux M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94:1–10

    Article  CAS  PubMed  Google Scholar 

  • Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M (2008) Decrease in Akt/PKB signaling in human skeletal muscle by resistance exercise. Eur J Appl Physiol 104:57–65

    Article  CAS  PubMed  Google Scholar 

  • Dreyer HC, Fugita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen B (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624

    Article  CAS  PubMed  Google Scholar 

  • Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294:E392–E400

    Article  CAS  PubMed  Google Scholar 

  • Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom BT, Blomstrand E (2006) Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291:E1197–E1205

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ, Phinney SD, Young VR (1982) Suction applied to a biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102

    CAS  PubMed  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. PNAS 103:4741–4746

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271:17920–17926

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J (1997) Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38. J Biol Chem 272:30122–30128

    Article  CAS  PubMed  Google Scholar 

  • Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116

    Article  CAS  PubMed  Google Scholar 

  • Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287:E1–E7

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ (2009) Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587:211–217

    Article  CAS  PubMed  Google Scholar 

  • Lehman N, Ledford B, Di Fulvio M, Frondorf K, McPhail LC, Gomez-Cambronero J (2007) Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J 21:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jiang Y, Ulevitch RJ, Han J (1996) The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 228:334–340

    Article  CAS  PubMed  Google Scholar 

  • Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91:693–702

    CAS  PubMed  Google Scholar 

  • Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E (2008) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294:E43–E51

    Article  CAS  PubMed  Google Scholar 

  • O′Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587:3691–3701

    Article  PubMed  Google Scholar 

  • Ronnestad RB, Egeland W, Kvamme NH, Refsnes PE, Kadi F, Raastad T (2007) Dissimilar effects of 1 and 3 set strength training on strength and muscle mass gains in upper and lower body in untrained subjects. J Strength Cond Res 21:157–163

    PubMed  Google Scholar 

  • Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M (2010) mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids 38:223–228

    Article  CAS  PubMed  Google Scholar 

  • Tannerstedt J, Apró W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowsk M, Yao Z (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272:23668–23674

    Article  CAS  PubMed  Google Scholar 

  • Wernbom M, Augustsson J, Roland T (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264

    Article  PubMed  Google Scholar 

  • Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547:977–987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to all of the subjects who participated in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos Terzis.

Additional information

Communicated by Hakan Westerblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzis, G., Spengos, K., Mascher, H. et al. The degree of p70S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol 110, 835–843 (2010). https://doi.org/10.1007/s00421-010-1527-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1527-2

Keywords

Navigation