Skip to main content
Log in

Effects of low ambient temperature on heart rate variability during sleep in humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The effects of cold exposure on heart rate variability (HRV) during sleep were examined. Eight male subjects slept under three different conditions: 3°C, 50–80% relative humidity (RH) [3]; 10°C, 50% RH [10]; and 17°C 50% RH [17]. No significant differences were observed in HRV during rapid eye movement sleep (REM) and wakefulness. The ratio of the low frequency (LF) to high frequency component (HF) of HRV (LF/HF) significantly differed among the conditions during stage 2 and slow wave sleep (SWS) that decreased as the ambient temperature decreased. The normalized LF [LF/(LF + HF)] significantly decreased in 3 and 10 than in 17 during SWS. In low ambient temperature, predominant cardiac parasympathetic activity during stage 2 with no significant difference during REM and wakefulness may cause variations in HRV at transition from stage 2 to REM and wakefulness. These results may partly explain the peak in adverse cardiac events during winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ako M, Kawara T, Uchida S, Miyazaki S, Nishihara K, Mukai J, Hirao K, Ako J, Okubo Y (2003) Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin Neurosci 57:59–65. doi:10.1046/j.1440-1819.2003.01080.x

    Article  PubMed  Google Scholar 

  • Bonnet MH, Arand DL (1997) Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol 102:390–396. doi:10.1016/S0921-884X(96)96070-1

    Article  PubMed  CAS  Google Scholar 

  • Brandenberger G, Ehrhart J, Piquard F, Simon C (2001) Inverse coupling between ultradian oscillations in delta wave activity and heart rate variability during sleep. Clin Neurophysiol 112:992–996. doi:10.1016/S1388-2457(01)00507-7

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Sanya EO, Hilz MJ (2003) Effect of cold face stimulation on cerebral blood flow in humans. Brain Res Bull 61:81–86. doi:10.1016/S0361-9230(03)00065-0

    Article  PubMed  Google Scholar 

  • Buguet A, Cespuglio R, Radomski MW (1998) Sleep and stress in man: an approach through exercise and exposure to extreme environments. Can J Physiol Pharmacol 76:553–561. doi:10.1139/cjpp-76-5-553

    Article  PubMed  CAS  Google Scholar 

  • Buguet AG (1987) Cold-induced bradycardia in man during sleep in arctic winter nights. Int J Biometeorol 31:21–31. doi:10.1007/BF02192832

    Article  PubMed  CAS  Google Scholar 

  • Burgess HJ, Penev PD, Schneider R, Van Cauter E (2004) Estimating cardiac autonomic activity during sleep: impedance cardiography, spectral analysis, and Poincaré plots. Clin Neurophysiol 115:19–28. doi:10.1016/S1388-2457(03)00312-2

    Article  PubMed  Google Scholar 

  • Burgess HJ, Trinder J, Kim Y (1996) Cardiac parasympathetic nervous system activity does not increase in anticipation of sleep. J Sleep Res 5:83–89. doi:10.1046/j.1365-2869.1996.00016.x

    Article  PubMed  CAS  Google Scholar 

  • Carrington M, Walsh M, Stambas T, Kleiman J, Trinder J (2003) The influence of sleep onset on the diurnal variation in cardiac activity and cardiac control. J Sleep Res 12:213–221. doi:10.1046/j.1365-2869.2003.00364.x

    Article  PubMed  Google Scholar 

  • Durel LA, Kus LA, Anderson NB, McNeilly M, Llabre MM, Spitzer S, Saab PG, Efland J, Williams R, Schneiderman N (1993) Patterns and stability of cardiovascular responses to variations of the cold pressor test. Psychophysiology 30:39–46

    PubMed  CAS  Google Scholar 

  • Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232

    PubMed  CAS  Google Scholar 

  • Elsenbruch S, Harnish MJ, Orr WC (1999) Heart rate variability during waking and sleep in healthy males and females. Sleep 22:1067–1071

    PubMed  CAS  Google Scholar 

  • Eurowinter Group (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet 9062:1341–1346

    Google Scholar 

  • Fagious J, Kay R (1991) Low ambient tempeature increases baroreflex-governed sympathetic outflow to muscle vessels in humans. Acta Physiol Scand 142:201–209

    Article  Google Scholar 

  • Finley JP, Bonet JF, Waxman MB (1979) Autonomic pathways responsible for bradycardia on facial immersion. J Appl Physiol 47:1218–1222

    PubMed  CAS  Google Scholar 

  • Friedman BH, Thayer JF, Tyrrell RA (1996) Spectral characteristics of heart period variability during cold face stress and shock avoidance in normal subjects. Clin Auton Res 6:147–152. doi:10.1007/BF02281901

    Article  PubMed  CAS  Google Scholar 

  • Gallo L, Maciel BC, Manço JC, Marin Neto JA (1988) Limitations of facial immersion as a test of parasympathetic activity in man. J Physiol 396:1–10

    PubMed  Google Scholar 

  • Gavhed D, Mäkinen T, Holmér I, Rintamäki H (2000) Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to −10°C. Eur J Appl Physiol 83:449–456. doi:10.1007/s004210000262

    Article  PubMed  CAS  Google Scholar 

  • Gilebert SS, Heuvel CJ, Ferguson SA, Dawson D (2004) Thermoregulation as a sleep signalling system. Sleep Med Rev 8:81–93. doi:10.1016/S1087-0792(03)00023-6

    Article  Google Scholar 

  • Gronfier C, Simon C, Piquard F, Ehrhart J, Brandenberger G (1999) Neuroendocrine processes underlying ultradian sleep regulation in man. J Clin Endocrinol Metab 84:2686–2690. doi:10.1210/jc.84.8.2686

    Article  PubMed  CAS  Google Scholar 

  • Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981a) The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol 51:494–501. doi:10.1016/0013-4694(81)90226-1

    Article  PubMed  CAS  Google Scholar 

  • Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981b) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Physiol 51:948–954

    PubMed  CAS  Google Scholar 

  • Heindl S, Struck J, Wellhöner P, Sayk F, Dodt C (2004) Effect of facial cooling and cold air inhalation on sympathetic nerve activity in men. Respir Physiol Neurobiol 142:69–80. doi:10.1016/j.resp.2004.05.004

    Article  PubMed  Google Scholar 

  • Hilz MJ, Stemper B, Sauer P, Haertl U, Singer W, Axelrod FB (1999) Cold face test demonstrates parasympathetic cardiac dysfunction in familial dysautonomia. Am J Physiol 276:R1833–R1839

    PubMed  CAS  Google Scholar 

  • Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    PubMed  CAS  Google Scholar 

  • Houle MS, Billman GE (1999) Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. Am J Physiol 276:H215–H223

    PubMed  CAS  Google Scholar 

  • Jennings JR, Reynolds CF, Bryant DS, Berman SR, Buysse DJ, Dahl RE, Hoch CC, Monk TH (1993) Peripheral thermal responsivity to facial cooling during sleep. Psychophysiology 30:374–382. doi:10.1111/j.1469-8986.1993.tb02059.x

    Article  PubMed  CAS  Google Scholar 

  • Keatinge WR, Coleshaw SR, Cotter F, Mattock M, Murphy M, Chelliah R (1984) Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. Br Med J (Clin Res Ed) 289:1405–1408

    Article  CAS  Google Scholar 

  • Khurana RK, Watabiki S, Hebel JR, Toro R, Nelson E (1980) Cold face test in the assessment of trigeminal-brainstem-vagal function in humans. Ann Neurol 7:144–149. doi:10.1002/ana.410070209

    Article  PubMed  CAS  Google Scholar 

  • Kinugasa H, Hirayanagi K (1999) Effects of skin surface cooling and heating on autonomic nervous activity and baroreflex sensitivity in humans. Exp Physiol 84:369–377. doi:10.1017/S0958067099018394

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA (2006) Natural and unnatural triggers of myocardial infarction. Prog Cardiovasc Dis 48:285–300. doi:10.1016/j.pcad.2005.07.001

    Article  PubMed  Google Scholar 

  • Korhonen I (2006) Blood pressure and heart rate responses in men exposed to arm and leg cold pressor tests and whole-body cold exposure. Int J Circumpolar Health 65:178–184

    PubMed  Google Scholar 

  • Kunitake T, Ishiko N (1992) Power spectrum analysis of heart rate fluctuations and respiratory movements associated with cooling the human skin. Auton Nerv Syst 38:45–55. doi:10.1016/0165-1838(92)90215-3

    Article  CAS  Google Scholar 

  • Lavery CE, Mittleman MA, Cohen MC, Muller JE, Verrier RL (1997) Nonuniform nighttime distribution of acute cardiac events: a possible effect of sleep states. Circulation 96:3321–3327

    PubMed  CAS  Google Scholar 

  • LeBlanc J, Mercier I (1992) Cold wind stimulation reflex. J Appl Physiol 73:1704–1707

    PubMed  CAS  Google Scholar 

  • Leppäluoto J, Korhonen I, Hassi J (2001) Habituation of thermal sensations, skin temperatures, and norepinephrine in men exposed to cold air. J Appl Physiol 90:1211–1218

    PubMed  Google Scholar 

  • Marchant B, Ranjadayalan K, Stevenson R, Wilkinson P, Timmis AD (1993) Circadian and seasonal factors in the pathogenesis of acute myocardial infarction: the influence of environmental temperature. Br Heart J 69:385–387. doi:10.1136/hrt.69.5.385

    Article  PubMed  CAS  Google Scholar 

  • Mercer JB (2003) Cold—an underrated risk factor for health. Environ Res 92:8–13. doi:10.1016/S0013-9351(02)00009-9

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T, Ogawa K, Itoh H, Arai Y, Ashidagawa M, Uchiyama M, Koide Y, Andoh T, Yamada Y (2003) Spectral analyses of electroencephalography and heart rate variability during sleep in normal subjects. Auton Neurosci Basic Clin 103:114–120. doi:10.1016/S1566-0702(02)00259-X

    Article  Google Scholar 

  • Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743

    PubMed  CAS  Google Scholar 

  • Muzet A, Libert JP, Candas V (1984) Ambient temperature and human sleep. Experientia 40:425–429. doi:10.1007/BF01952376

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, Matsubara M, Hashimoto J, Hoshi H, Araki T, Tsuji I, Satoh H, Hisamichi S, Imai Y (2002) Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 20:2183–2189. doi:10.1097/00004872-200211000-00017

    Article  PubMed  CAS  Google Scholar 

  • Okamoto-Mizuno K, Yamashiro K, Tanaka H, Komada Y, Mizuno K, Tamaki M, Kitado M, Inoue Y, Shirakawa S (2008) Heart rate variability and body temperature during the sleep onset period. Sleep Biol Rhythms 6:42–49. doi:10.1111/j.1479-8425.2008.00335.x

    Article  Google Scholar 

  • Palca JW, Walker JM, Berger RJ (1986) Thermoregulation, metabolism, and stages of sleep in cold-exposed men. J Appl Physiol 61:940–947

    PubMed  CAS  Google Scholar 

  • Rechtschaffen A, Kales A (1968) Anonymous A manual of standardised terminology, technique and scoring system for sleep stages of human subjects. Public health service, US. Government Printing Office

  • Rudnicka AR, Rumley A, Lowe GD, Strachan DP (2007) Diurnal, seasonal, and blood-processing patterns in levels of circulating fibrinogen, fibrin D-dimer, C-reactive protein, tissue plasminogen activator, and von Willebrand factor in a 45-year-old population. Circulation 115:996–1003. doi:10.1161/CIRCULATIONAHA.106.635169

    Article  PubMed  CAS  Google Scholar 

  • Saab PG, Llabre MM, Hurwitz BE, Schneiderman N, Wohlgemuth W, Durel LA, Massie C, Nagel J (1993) The cold pressor test: vascular and myocardial response patterns and their stability. Psychophysiology 30:366–373. doi:10.1111/j.1469-8986.1993.tb02058.x

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Ohtomo N, Tanaka Y, Tanaka G, Yamakoshi K, Terachi S, Shimamoto K, Nakagawa M, Satoh S, Kuroda O (1997) New technique for time series analysis combining the maximum entropy method and non-linear least squares method: its value in heart rate variability analysis. Med Biol Eng Comput 35:318–322. doi:10.1007/BF02534083

    Article  PubMed  CAS  Google Scholar 

  • Sei H, Morita Y (1999) Why does arterial blood pressure rise actively during REM sleep? J Med Invest 46:11–17

    PubMed  CAS  Google Scholar 

  • Sheth T, Nair C, Muller J, Yusuf S (1999) Increased winter mortality from acute myocardial infarction and stroke: the effect of age. J Am Coll Cardiol 33:1916–1919. doi:10.1016/S0735-1097(99)00137-0

    Article  PubMed  CAS  Google Scholar 

  • Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328:303–307. doi:10.1056/NEJM199302043280502

    Article  PubMed  CAS  Google Scholar 

  • Stemper B, Hilz MJ, Rauhut U, Neundörfer B (2002) Evaluation of cold face test bradycardia by means of spectral analysis. Clin Auton Res 12:78–83. doi:10.1007/s102860200024

    Article  PubMed  CAS  Google Scholar 

  • Task Force (1996) Heart rate variability standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • Trinder J, Kleiman J, Carrington M, Smith S, Breen S, Tan N, Kim Y (2001) Autonomic activity during human sleep as a function of time and sleep stage. J Sleep Res 10:253–264. doi:10.1046/j.1365-2869.2001.00263.x

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki K, Yokoyama K, Yokoi T, Ogi H, Taya H, Yoshioka M, Nakamura K (2001) Thermal environments and indoor air quality in the elderly houses in a rural area. Jpn J Biometeorol 40:23–32

    Google Scholar 

  • Valladares EM, Elijammal SM, Motivala S, Ehlers CL, Irwin MR (2008) Sex differences in cardiac sympathovagal balance and vagal tone during nocturnal sleep. Sleep Med 9:310–316. doi:10.1016/j.sleep.2007.02.012

    Article  PubMed  Google Scholar 

  • Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP (1994) Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Physiol 266:H548–H554

    PubMed  Google Scholar 

  • Vaughn BV, Quint SR, Messenheimer JA, Robertson KR (1995) Heart period variability in sleep. Electroencephalogr Clin Neurophysiol 94:155–162. doi:10.1016/0013-4694(94)00270-U

    Article  PubMed  CAS  Google Scholar 

  • Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, Guerrieri M, Gatteschi C, Zampi I, Santucci A (1994) Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 24:793–801

    PubMed  CAS  Google Scholar 

  • Viola AU, Simon C, Eh rhart J, Geny B, Piquard F, Muzet A, Brandenberger G (2002) Sleep processes exert a predominant influence on the 24-h profile of heart rate variability. J Biol Rhythms 17:539–547. doi:10.1177/0748730402238236

    Article  PubMed  Google Scholar 

  • Wagner JA, Horvath SM (1985) Cardiovascular reactions to cold exposures differ with age and gender. J Appl Physiol 58:187–192

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed through Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazue Okamoto-Mizuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto-Mizuno, K., Tsuzuki, K., Mizuno, K. et al. Effects of low ambient temperature on heart rate variability during sleep in humans. Eur J Appl Physiol 105, 191–197 (2009). https://doi.org/10.1007/s00421-008-0889-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0889-1

Keywords

Navigation