Skip to main content
Log in

Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

The potential health risks of electromagnetic fields (EMFs) have currently raised considerable public concerns. The aim of this study was to evaluate the effects of EMF exposure on levels of plasma hormonal and inflammatory pathway biomarkers in male workers of an electric power plant.

Methods

Seventy-seven male workers with high occupational EMF exposure and 77 male controls with low exposure, matched by age, were selected from a cross-sectional study. Moreover, high EMF exposure group was with walkie-talkies usage and exposed to power frequency EMF at the work places for a longer duration than control group. A questionnaire was applied to obtain relevant information, including sociodemographic characteristics, lifestyle factors, and EMF exposures. Plasma levels of testosterone, estradiol, melatonin, NF-κB, heat–shock protein (HSP) 70, HSP27, and TET1 were determined by an enzyme-linked immunosorbent assay.

Results

EMF exposure group had statistically significantly lower levels of testosterone (β = −0.3 nmol/L, P = 0.015), testosterone/estradiol (T/E2) ratio (β = −15.6, P = 0.037), and NF-κB (β = −20.8 ng/L, P = 0.045) than control group. Moreover, joint effects between occupational EMF exposure and employment duration, mobile phone fees, years of mobile phone usage, and electric fees on levels of testosterone and T/E2 ratio were observed. Nevertheless, no statistically significant associations of EMF exposures with plasma estradiol, melatonin, HSP70, HSP27, and TET1 were found.

Conclusions

The findings showed that chronic exposure to EMF could decrease male plasma testosterone and T/E2 ratio, and it might possibly affect reproductive functions in males. No significant associations of EMF exposure with inflammatory pathway biomarkers were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Akhras MA, Darmani H, Elbetieha A (2006) Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 27(2):127–131. doi:10.1002/bem.20186

    Article  CAS  Google Scholar 

  • Altpeter ES, Roosli M, Battaglia M, Pfluger D, Minder CE, Abelin T (2006) Effect of short-wave (6–22 MHz) magnetic fields on sleep quality and melatonin cycle in humans: the Schwarzenburg shut-down study. Bioelectromagnetics 27(2):142–150. doi:10.1002/bem.20183

    Article  CAS  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683. doi:10.1146/annurev.immunol.14.1.649

    Article  CAS  Google Scholar 

  • Bonde JP (1990) Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study. Br J Ind Med 47(8):508–514

    CAS  Google Scholar 

  • Calvente I, Fernandez M, Villalba J, Olea N, Nuñez M (2010) Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review. Sci Total Environ 408(16):3062–3069

    Article  CAS  Google Scholar 

  • Carpenter DO (2013) Human disease resulting from exposure to electromagnetic fields. Rev Environ Health 28(4):159–172. doi:10.1515/reveh-2013-0016

    Article  Google Scholar 

  • Claustrat B, Chazot G, Brun J, Jordan D, Sassolas G (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19(8):1215–1228

    CAS  Google Scholar 

  • de Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D (2000) Cell biology: non-thermal heat-shock response to microwaves. Nature 405:417–418

    Article  Google Scholar 

  • De Rosa M, Zarrilli S, Di Sarno A, Milano N, Gaccione M, Boggia B, Lombardi G, Colao A (2003) Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine 20(1–2):75–82. doi:10.1385/ENDO:20:1-2:75

    Article  Google Scholar 

  • Ding GR, Yaguchi H, Yoshida M, Miyakoshi J (2000) Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-kappaB-inhibited cells. Biochem Biophys Res Commun 276(1):238–243. doi:10.1006/bbrc.2000.3455

    Article  CAS  Google Scholar 

  • Djeridane Y, Touitou Y, de Seze R (2008) Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res 169(3):337–343. doi:10.1667/RR0922.1

    Article  CAS  Google Scholar 

  • Duan W, Liu C, Wu H, Chen C, Zhang T, Gao P, Luo X, Yu Z, Zhou Z (2014) Effects of exposure to extremely low frequency magnetic fields on spermatogenesis in adult rats. Bioelectromagnetics 35(1):58–69. doi:10.1002/bem.21816

    Article  Google Scholar 

  • Forgács Z, Somosy Z, Kubinyi G, Bakos J, Hudák A, Surján A, Thuróczy G (2006) Effect of whole-body 1800 MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice. Reprod Toxicol 22(1):111–117

    Article  CAS  Google Scholar 

  • Frei P, Mohler E, Neubauer G, Theis G, Burgi A, Frohlich J, Braun-Fahrlander C, Bolte J, Egger M, Roosli M (2009) Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 109(6):779–785. doi:10.1016/j.envres.2009.04.015

    Article  CAS  Google Scholar 

  • Gamberale F, Olson BA, Eneroth P, Lindh T, Wennberg A (1989) Acute effects of ELF electromagnetic fields: a field study of linesmen working with 400 kV power lines. Br J Ind Med 46(10):729–737

    CAS  Google Scholar 

  • Genuis SJ (2008) Fielding a current idea: exploring the public health impact of electromagnetic radiation. Public Health 122(2):113–124

    Article  Google Scholar 

  • Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62(2):104–109. doi:10.1016/j.biopha.2007.12.004

    Article  CAS  Google Scholar 

  • Hardell L, Soderqvist F, Carlberg M, Zetterberg H, Mild KH (2010) Exposure to wireless phone emissions and serum beta-trace protein. Int J Mol Med 26(2):301–306

    Article  CAS  Google Scholar 

  • Henshaw DL, Reiter RJ (2005) Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption? Bioelectromagnetics 26(S7):S86–S97

    Article  CAS  Google Scholar 

  • Hjollund N, Skotte JH, Kolstad HA, Bonde J (1999) Extremely low frequency magnetic fields and fertility: a follow up study of couples planning first pregnancies. The Danish first pregnancy planner study team. Occup Environ Med 56(4):253–255

    Article  CAS  Google Scholar 

  • Hjollund NH, Bonde JP, Jensen TK, Ernst E, Henriksen TB, Kolstad HA, Giwercman A, Skakkebaek NE, Olsen J (1998) Semen quality and sex hormones with reference to metal welding. Reprod Toxicol 12(2):91–95

    Article  CAS  Google Scholar 

  • Holdcraft RW, Braun RE (2004) Hormonal regulation of spermatogenesis. Int J Androl 27(6):335–342. doi:10.1111/j.1365-2605.2004.00502.x

    Article  CAS  Google Scholar 

  • Holian O, Astumian RD, Lee R, Reyes H, Attar B, Walter R (1996) Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics 17(6):504–509

    Article  CAS  Google Scholar 

  • IARC (2002) Non-ionizing radiation, Part I: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum 80:331–338

    Google Scholar 

  • IARC (2011) Non-ionizing radiation, Part II: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum 102:407–419

    Google Scholar 

  • Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner E, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA (1996) Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86(5):787–798

    Article  CAS  Google Scholar 

  • Kesari KK, Behari J (2012) Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med 31(3):213–222. doi:10.3109/15368378.2012.700292

    Article  CAS  Google Scholar 

  • Kheifets L, Monroe J, Vergara X, Mezei G, Afifi AA (2008) Occupational electromagnetic fields and leukemia and brain cancer: an update to two meta-analyses. J Occup Environ Med 50(6):677–688

    Article  Google Scholar 

  • Lee HJ, Jin YB, Kim TH, Pack JK, Kim N, Choi HD, Lee JS, Lee YS (2012) The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function. Bioelectromagnetics 33(4):356–364. doi:10.1002/bem.20715

    Article  CAS  Google Scholar 

  • Lim HB, Cook GG, Barker AT, Coulton LA (2005) Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes. Radiat Res 163(1):45–52

    Article  CAS  Google Scholar 

  • Luboshitzky R, Kaplan-Zverling M, Shen-Orr Z, Nave R, Herer P (2002a) Seminal plasma androgen/oestrogen balance in infertile men. Int J Androl 25(6):345–351

    Article  CAS  Google Scholar 

  • Luboshitzky R, Shen-Orr Z, Herer P (2002b) Seminal plasma melatonin and gonadal steroids concentrations in normal men. Arch Androl 48(3):225–232. doi:10.1080/01485010252869324

    Article  CAS  Google Scholar 

  • Møllerløkken OJ, Moen BE, Baste V, Magerøy N, Oftedal G, Neto E, Ersland L, Bjørge L, Torjesen PA, Mild KH (2012) No effects of MRI scan on male reproduction hormones. Reprod Toxicol 34(1):133–139

    Article  CAS  Google Scholar 

  • Meo SA, Al-Drees AM, Husain S, Khan MM, Imran MB (2010) Effects of mobile phone radiation on serum testosterone in Wistar albino rats. Saudi Med J 31(8):869–873

    Google Scholar 

  • Miyakoshi J, Takemasa K, Takashima Y, Ding GR, Hirose H, Koyama S (2005) Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26(4):251–257

    Article  CAS  Google Scholar 

  • Neves-Costa A, Moita LF (2013) TET1 is a negative transcriptional regulator of IL-1β in the THP-1 cell line. Mol Immunol 54(3):264–270

    Article  CAS  Google Scholar 

  • Ozguner M, Koyu A, Cesur G, Ural M, Ozguner F, Gokcimen A, Delibas N (2005) Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi Med J 26(3):405–410

    Google Scholar 

  • Ozlem Nisbet H, Nisbet C, Akar A, Cevik M, Karayigit MO (2012) Effects of exposure to electromagnetic field (1.8/0.9 GHz) on testicular function and structure in growing rats. Research in veterinary science 93(2):1001-1005 doi:10.1016/j.rvsc.2011.10.023

  • Ross CL, Harrison BS (2013) Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res 6:45–51

    Article  CAS  Google Scholar 

  • Söderqvist F, Carlberg M, Zetterberg H, Hardell L (2012) Use of wireless phones and serum β-trace protein in randomly recruited persons aged 18–65 years: a cross-sectional study. Electromagn Biol Med 31(4):416–424

    Article  CAS  Google Scholar 

  • Schell MT, Spitzer AL, Johnson JA, Lee D, Harris HW (2005) Heat shock inhibits NF-kB activation in a dose-and time-dependent manner. J Surg Res 129(1):90–93

    Article  CAS  Google Scholar 

  • Sepehrimanesh M, Saeb M, Nazifi S, Kazemipour N, Jelodar G, Saeb S (2014) Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model. Int J Biometeorol 58(7):1657–1663. doi:10.1007/s00484-013-0771-7

    Article  Google Scholar 

  • Shahin S, Mishra V, Singh SP, Chaturvedi CM (2014) 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radical Res 48(5):511–525. doi:10.3109/10715762.2014.888717

    Article  CAS  Google Scholar 

  • Tenorio BM, Jimenez GC, de Morais RN, Peixoto CA, de Albuquerque Nogueira R, da Silva Jr VA (2012) Evaluation of testicular degeneration induced by low-frequency electromagnetic fields. J Appl Toxicol JAT 32(3):210–218. doi:10.1002/jat.1680

    Article  CAS  Google Scholar 

  • Tian F, Nakahara T, Wake K, Taki M, Miyakoshi J (2002) Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5 W/kg in human glioma MO54 cells. Int J Radiat Biol 78(5):433–440

    Article  CAS  Google Scholar 

  • Touitou Y, Selmaoui B (2012) The effects of extremely low-frequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system. Dialog Clin Neurosci 14(4):381

    Google Scholar 

  • Uckun FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R (1995) Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates Lyn kinase. J Biol Chem 270(46):27666–27670

    Article  CAS  Google Scholar 

  • Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158(6):1189–1196

    Article  CAS  Google Scholar 

  • Wang J, Koyama S, Komatsubara Y, Suzuki Y, Taki M, Miyakoshi J (2006) Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells. Bioelectromagnetics 27(6):479–486

    Article  CAS  Google Scholar 

  • Yang X-S, He G-L, Hao Y-T, Xiao Y, Chen C-H, Zhang G-B, Yu Z-P (2012) Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 88(4):371–378

    Article  Google Scholar 

  • Zhang Q, Bai Q, Yuan Y, Liu P, Qiao J (2010) Assessment of seminal estradiol and testosterone levels as predictors of human spermatogenesis. J Androl 31(2):215–220

    Article  CAS  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28(1):53–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of Ningbo Medical Treatment Center Lihuili Hospital for their continuous support and assistance to collect blood specimen. We are particularly grateful for the supports and contributions of all participants and their family. This study was supported by the National Basic Research Program of China (973 Program) (Grant No.: 2011CB503706), the National Natural Science Foundation of China (Grant No.: 81172624), and Natural Science Foundation of Zhejiang Province, China (Grant No.: LY14H260003).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxian Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fei, Y., Liu, H. et al. Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant. Int Arch Occup Environ Health 89, 33–42 (2016). https://doi.org/10.1007/s00420-015-1049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-015-1049-7

Keywords

Navigation