Skip to main content
Log in

Experimental and theoretical study on out-of-plane compression buckling properties of grid beetle elytron plate

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the shell and plate theory, this paper uses the divide-and-combine method (DCM) to derive an analytical out-of-plane compression buckling limit expression of the basic unit of the core layer of a grid beetle elytron plate (GBEP); the accuracy of expression and the mechanism of GBEP unit buckling are investigated through experiments and finite element (FE) simulation. The results show that: (1) the theoretical expression of the out-of-plane compression buckling limit of a GBEP unit obtained by DCM is applicable and is closer to the test results than the classical solution of the out-of-plane compressive buckling of a cylindrical shell and the theoretical result of Flügge. Based on this, a modified expression of the theoretical result of Flügge’s compressive buckling limit load is proposed. (2) Given the significant differences between the theoretical values obtained in this paper and the experimental values, the out-of-plane compressive buckling resistance of the GBEP unit and its mechanism are investigated from the viewpoints of structural parameters \(\eta\) (the ratio of the radius of the trabeculae to the width of the element) and deformation process; the synergistic mechanism of the honeycomb-trabeculae structure is also studied. This paper contributes to improving the bionic system derived from the beetle's forewing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Notes

  1. The parameter \({c}_{3}\) in this study has an extra term \({\lambda }^{4}\left(3+2\mu \right)\), compared with that in reference [35] (\({c}_{3}{\prime}={\lambda }^{2}{\left({\lambda }^{2}+{m}^{2}\right)}^{2}+{\lambda }^{2}{m}^{2}\)). It is believed that the author of reference [35] made a mistake. This will be discussed below.

  2. The buckling load expression considering multiple modes will be carried out in the follow-up in-depth research.

References

  1. Miller, W., Smith, C.W., Scarpa, F., Evans, K.E.: Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049 (2010). https://doi.org/10.1016/j.compscitech.2009.10.022

    Article  Google Scholar 

  2. Wang, D., Bai, Z.: Mechanical property of paper honeycomb structure under dynamic compression. Mater. Des. 77, 59 (2015). https://doi.org/10.1016/j.matdes.2015.03.037

    Article  Google Scholar 

  3. He, X.D., Kong, X.H., Shi, L.P., Li, M.W.: High-frequency vibration response of metal honeycomb sandwich structure. Adv. Mat. Res. 79–82, 1727–1730 (2009). https://doi.org/10.4028/www.scientific.net/AMR.79-82.1727

    Article  Google Scholar 

  4. Kodiyalam, S., Nagendra, S., DeStefano, J.: Composite sandwich structure optimization with application to satellite components. AIAA J. 34, 614–621 (1996). https://doi.org/10.2514/3.13112

    Article  MATH  Google Scholar 

  5. Liu, Z., Yu, Y., Yang, Z., Wei, Y., Cai, J., Li, M., Huang, C.: Dynamic experimental studies of A6N01S-T5 aluminum alloy material and structure for high-speed trains. Acta Mech. Sinica. 35, 763–772 (2019). https://doi.org/10.1007/s10409-018-0830-8

    Article  Google Scholar 

  6. Belingardi, G., Cavatorta, M.P., Duella, R.: Material characterization of a composite–foam sandwich for the front structure of a high speed train. Compos. Struct. 61, 13–25 (2003). https://doi.org/10.1016/S0263-8223(03)00028-X

    Article  Google Scholar 

  7. Zhao, C., Zheng, W., Ma, J., Zhao, Y.: The lateral compressive buckling performance of aluminum honeycomb panels for long-span hollow core roofs. Materials 9, 444 (2016). https://doi.org/10.3390/ma9060444

    Article  Google Scholar 

  8. Hu, B.: Bio-based composite sandwich panel for residential construction, Newark: University of Delaware (2006)

  9. Briscoe, C.R., Mantell, S.C., Davidson, J.H., Okazaki, T.: Design procedure for web core sandwich panels for residential roofs. J. Sandwich Struct. Mater. 13, 23–58 (2011). https://doi.org/10.1177/1099636210365441

    Article  Google Scholar 

  10. Chen, J., Ni, Q., Iwamoto, M.: A reinforced sandwich plate with polygonal grid in the middle, China: ZL 03116503.6 (2006)

  11. Chen, J., Zhang, X., Okabe, Y., Xie, J., Xu, M.: Beetle elytron plate and the synergistic mechanism of a trabecular-honeycomb core structure. Sci. China Technol. Sci. 62, 87–93 (2019). https://doi.org/10.1007/s11431-018-9290-1

    Article  Google Scholar 

  12. Chen, J., Gu, C., Guo, S., Wan, C., Wang, X., Xie, J., Hu, X.: Integrated honeycomb technology motivated by the structure of beetle forewings. Mater. Sci. Eng. C 32, 1813–1817 (2012). https://doi.org/10.1016/j.msec.2012.04.067

    Article  Google Scholar 

  13. Chen, J., Hao, N., Pan, L., Hu, L., Du, S., Fu, Y.: Characteristics of compressive mechanical properties and strengthening mechanism of 3D-printed grid beetle elytron plates. J. Mater. Sci. 55, 8541–8552 (2020). https://doi.org/10.1007/s10853-020-04630-6

    Article  Google Scholar 

  14. Kreja, I.: A literature review on computational models for laminated composite and sandwich panels. Central Eur. J. Eng. 1, 59–80 (2011). https://doi.org/10.2478/s13531-011-0005-x

    Article  Google Scholar 

  15. Gibson, L.J., Ashby, M.F.: Cellular Solids. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Gotoh, M., Yamashita, M., Kawakita, A.: Crush behavior of honeycomb structure impacted by drop-hammer and its numerical analysis. J. Soc. Mater. Sci. Jpn. 45, 261–266 (1996). https://doi.org/10.2472/jsms.45.12Appendix_261

    Article  Google Scholar 

  17. Warren, W.E., Kraynik, A.M.: Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials. Mech. Mater. 6, 27–37 (1987). https://doi.org/10.1016/0167-6636(87)90020-2

    Article  Google Scholar 

  18. Hoff, N.J.: Bending and buckling of rectangular sandwich plates, Brooklyn (1950)

  19. Reissner, E.: On small bending and stretching of sandwich-type shells. Int J Solids Struct. 13, 1293–1300 (1977). https://doi.org/10.1016/0020-7683(77)90102-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Rabczuk, T., Kim, J.Y., Samaniego, E., Belytschko, T.: Homogenization of sandwich structures. Int. J. Numer. Methods Eng. 61, 1009–1027 (2004). https://doi.org/10.1002/nme.1100

    Article  MATH  Google Scholar 

  21. Zhou, Z.: Research on Equivalent of Special Materials, Dalian: Dalian Jiaotong University (2013)

  22. Chen, J., Yu, X., Xu, M., Okabe, Y., Zhang, X., Tuo, W.: The compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate. J. Sandwich Struct. Mater. 22, 948–961 (2020). https://doi.org/10.1177/1099636218777188

    Article  Google Scholar 

  23. Chen, J., Zu, Q., Wu, G., Xie, J., Tuo, W.: Review of beetle forewing structures and their biomimetic applications in China: (II) on the three-dimensional structure, modeling and imitation. Mater. Sci. Eng., C 55, 620–633 (2015). https://doi.org/10.1016/j.msec.2015.04.045

    Article  Google Scholar 

  24. Chen, J., Zhang, X., Okabe, Y., Saito, K., Guo, Z., Pan, L.: The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Mater. Des. 131, 481–486 (2017). https://doi.org/10.1016/j.matdes.2017.06.014

    Article  Google Scholar 

  25. Chen, J., Tuo, W., Wei, P., Okabe, Y., Xu, M., Xu, M.: Characteristics of the shear mechanical properties and the influence mechanism of short basalt fiber reinforced polymer composite materials. J. Sandwich Struct. Mater. 21, 1520–1534 (2019). https://doi.org/10.1177/1099636217716466

    Article  Google Scholar 

  26. Xu, M., Pan, L., Chen, J., Zhang, X., Yu, X.: The flexural properties of end-trabecular beetle elytron plates and their flexural failure mechanism. J. Mater. Sci. 54, 8414–8425 (2019). https://doi.org/10.1007/s10853-019-03488-7

    Article  Google Scholar 

  27. Du, S., Hao, N., Chen, J., Li, Y.: Calculation of the equivalent shear moduli of the grid beetle elytron plate core layer. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02311-1

    Article  Google Scholar 

  28. Zhang, X.M., Wang, Y.C., Foster, A.S.J., Su, M.N.: Elastic local buckling behaviour of beetle elytron plate. Thin-Walled Struct. 165, 107922 (2021). https://doi.org/10.1016/j.tws.2021.107922

    Article  Google Scholar 

  29. Zhang, X.M., Wang, Y.C., Su, M.N., Bartolo, P.: Elastic–plastic buckling behaviour of beetle elytron plate with simple, fixed and flexible core supports. Thin-Walled Struct. 179, 109534 (2022). https://doi.org/10.1016/j.tws.2022.109534

    Article  Google Scholar 

  30. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. Courier Corporation, Chelmsford (2009)

    Google Scholar 

  31. Brush, D.O., Jolly, W.L., Brush, O.D., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, New York (1975)

    Book  MATH  Google Scholar 

  32. Wu, L.: The Theory of Plate and Shell. Shanghai Jiaotong University Press, Shanghai (1989)

    Google Scholar 

  33. von Kármán, T., Dunn, L.G., Tsien, H.: The Influence of curvature on the buckling characteristics of structures. In: Collected Works of H.S. Tsien (1938–1956). pp. 122–145. Elsevier (2012)

  34. von Kármán, Th., Tsien, H.: The buckling of thin cylindrical shells under axial compression. J. Aeronaut. Sci. 8, 303–312 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  35. Flügge, W.: Stresses in Shells. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  36. Van Vinh, P., Tounsi, A.: Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. Thin-Walled Struct. 174, 109084 (2022). https://doi.org/10.1016/j.tws.2022.109084

    Article  Google Scholar 

  37. Huang, Y., Karami, B., Shahsavari, D., Tounsi, A.: Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch. Civil Mech. Eng. 21, 139 (2021). https://doi.org/10.1007/s43452-021-00291-7

    Article  Google Scholar 

  38. Katiyar, V., Gupta, A., Tounsi, A.: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM. Steel Compos. Struct. 45, 621–640 (2022)

    Google Scholar 

  39. Van Vinh, P., Van Chinh, N., Tounsi, A.: Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur. J. Mech. A Solids 96, 104743 (2022). https://doi.org/10.1016/j.euromechsol.2022.104743

    Article  MathSciNet  MATH  Google Scholar 

  40. Garg, A., Belarbi, M.-O., Tounsi, A., Li, L., Singh, A., Mukhopadhyay, T.: Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model. Eng. Anal. Bound. Elem. 143, 779–795 (2022). https://doi.org/10.1016/j.enganabound.2022.08.001

    Article  MathSciNet  MATH  Google Scholar 

  41. Cuong-Le, T., Le Minh, H., Nguyen, P., Phan-Vu, P.: Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv. Nano Res. 12, 441–455 (2022). https://doi.org/10.12989/anr.2022.12.5.441

    Article  Google Scholar 

  42. Kumar, Y., Gupta, A., Tounsi, A.: Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv. Nano Res. 11, 1–17 (2021). https://doi.org/10.12989/anr.2021.11.1.001

    Article  Google Scholar 

  43. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng. Mech. 71, 485–502 (2019). https://doi.org/10.12989/sem.2019.71.5.485

    Article  Google Scholar 

  44. Du, S., Li, Y., Chen, J.: The calculation of in-plane equivalent elastic parameters of a grid beetle elytra plate core. Mech. Mater. 161, 103999 (2021). https://doi.org/10.1016/j.mechmat.2021.103999

    Article  Google Scholar 

  45. Chen, J.: Stability of Steel Structures: Theory and Design. Science Press, Beijing (2014)

    Google Scholar 

  46. Chen, J., Xie, J., Zhu, H., Guan, S., Wu, G., Noori, M.N., Guo, S.: Integrated honeycomb structure of a beetle forewing and its imitation. Mater. Sci. Eng. C. 32, 613–618 (2012). https://doi.org/10.1016/j.msec.2011.12.020

    Article  Google Scholar 

  47. Koiter, W.T.: On the Stability of Elastic Equibrium. National Aeronautics and Space Administration, Washington (1967)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 51875102) and the China Scholarship Council (Grant No. 202006090073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Chen.

Ethics declarations

Conflict of interest

The authors declare no known competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Calculating the result of Eq. (11), we can have:

$$\begin{aligned}{p}_{{\rm cr}2}&=\frac{K{\pi }^{2}}{{\left(2l\right)}^{2}}\left[\frac{{m}^{2}{\left(2l\right)}^{2}}{{h}^{2}}+\frac{8{n}^{2}}{3}+\frac{16{n}^{4}{h}^{2}}{3{m}^{2}{\left(2l\right)}^{2}}\right]\\ &\quad+ \frac{{n}^{2}E{f}^{2}{\pi }^{2}t}{3({2l)}^{2}}\left[\frac{{n}^{2}{h}^{2}}{4{m}^{2}{(2l)}^{2}}+\frac{15{m}^{2}{(2l)}^{2}}{64{n}^{2}{h}^{2}}-\frac{{m}^{2}{n}^{2}{h}^{2}({2l)}^{2}}{{8(4{m}^{2}{l}^{2}+{n}^{2}{h}^{2})}^{2}}\right]. \end{aligned}$$
(27)

In this study, the post-buckling increase of the plate load is:

$$\begin{array}{c}\Delta {p}_{x}=\frac{{n}^{2}E{f}^{2}{\pi }^{2}t}{3({2l)}^{2}}[\frac{{n}^{2}{h}^{2}}{4{m}^{2}{(2l)}^{2}}+\frac{15{m}^{2}{(2l)}^{2}}{64{n}^{2}{h}^{2}}-\frac{{m}^{2}{n}^{2}{h}^{2}({2l)}^{2}}{{8(4{m}^{2}{l}^{2}+{n}^{2}{h}^{2})}^{2}}], \end{array}$$
(28)

According to Eq. (25), the deflection of the plate is:

$$\begin{array}{c}f=\sqrt{\frac{3{l}^{2}\left({p}_{{\rm cr}2}-{p}_{{\rm cr}x}\right)}{{n}^{2}{\pi }^{2}Et\left[{n}^{2}{h}^{2}/64{m}^{2}{l}^{2}+\frac{15{m}^{2}{l}^{2}}{64{n}^{2}{h}^{2}}-{m}^{2}{n}^{2}{h}^{2}{l}^{2}/8{\left(4{m}^{2}{l}^{2}+{n}^{2}{h}^{2}\right)}^{2}\right]}} \end{array}$$
(29)

Introduce Eq. (18) into Eq. (27):

$$\begin{array}{c}{f}^{2}=\frac{3{l}^{2}\left({f}_{y}t-{p}_{{\rm cr}x}\right)}{Et{n}^{2}{\pi }^{2}\left[\frac{{\lambda }_{2}^{2}}{16}+\frac{45}{256{\lambda }_{2}^{2}}+\frac{1}{{\left({\lambda }_{2}^{2}+1\right)}^{2}}\right]}, \end{array}$$
(30)

\({p}_{{\rm cr}x}\) can be written as a function of \({\lambda }_{2}\), thus:

$$\begin{array}{c}{p}_{{\rm cr}2}=\frac{K{n}^{2}{\pi }^{2}}{{\left(2l\right)}^{2}}\left(\frac{1}{{\lambda }_{2}^{2}}+\frac{16{\lambda }_{2}^{2}}{3}+\frac{8}{3}\right)+\left[{f}_{y}t-\frac{K{n}^{2}{\pi }^{2}}{{\left(2l\right)}^{2}}\left(\frac{1}{{\lambda }_{2}^{2}}+\frac{16{\lambda }_{2}^{2}}{3}+\frac{8}{3}\right)\right]\frac{1+\frac{15}{16{\lambda }_{2}^{4}}-\frac{1}{{2\left({\lambda }_{2}^{2}+1\right)}^{2}}}{1+\frac{45}{16{\lambda }_{2}^{4}}+\frac{4}{{\left({\lambda }_{2}^{2}+1\right)}^{2}}}. \end{array}$$
(31)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Keller, T., Chen, J. et al. Experimental and theoretical study on out-of-plane compression buckling properties of grid beetle elytron plate. Arch Appl Mech 93, 4143–4155 (2023). https://doi.org/10.1007/s00419-023-02486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02486-1

Keywords

Navigation