Skip to main content
Log in

Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, frictionless contact problem for a functionally graded (FG) layer is considered. The FG layer is subjected to load with a rigid punch and the FG layer is bonded on a rigid foundation. Analysis of this contact problem was carried out by analytical method, finite element method (FEM) and multilayer perceptron (MLP), comparatively. The main target of this study is to investigate the applicability of MLP analysis for frictionless contact problem of FG layer bonded on a rigid foundation. Analytical solution of the problem is based on the theory of elasticity and integral transform techniques. The physical contact problem is transformed to mathematical system of integral equation. The integral equation in which the contact pressures are unknown functions is numerically solved with the Gauss–Jacobi integration formulation. Finite element analysis of the problem is carried out with ANSYS software by using the two-dimensional modeling technique. Finally, MLP analysis has been used to obtain the contact distances of the problem. Three-layer MLP was used for this calculation. Material properties and loading conditions were created by giving examples of different values in MLP training and testing stages. Program code was rewritten in C++. As a result, average deviation values such as 1.67 and 0.885 were obtained for FEM and MLP, respectively. It has been determined that the contact areas and contact stresses obtained from FEM and MLP are quite compatible with the results obtained from the analytical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Öner, E., Birinci, A.: Investigation of the solution for discontinuous contact problem between a functionally graded (FG) layer and homogeneous half-space. Arch. Appl. Mech. 90, 2821–2823 (2020). https://doi.org/10.1007/s00419-020-01777-1

    Article  Google Scholar 

  2. Matysiak, S.J., Pauk, V.J.: Plane contact problem for periodic laminated composite involving frictional heating. Arch. Appl. Mech. 66, 82–89 (1995). https://doi.org/10.1007/BF00786691

    Article  MATH  Google Scholar 

  3. Naebe, M., Shirvanimoghaddam, K.: Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016). https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  4. Yarimpabuc, D., Eker, M., Celebi, K.: Mechanical behavior of functionally graded pressure vessels under the effect of Poisson’s ratio. Euro. Mech. Sci. 2(2), 52–59 (2018). https://doi.org/10.26701/ems.360134

    Article  Google Scholar 

  5. Cannillo, V.L., Lusvarghi, C., Siligardi, S.A.: Prediction of the elastic properties profile in glass-alumina functionally graded materials. J. Eur. Ceram. Soc. 27(6), 2393–2400 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.09.009

    Article  Google Scholar 

  6. Jha, D.K., Kant, T., Singh, R.K.: Critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013). https://doi.org/10.1016/j.compstruct.2012.09.001

    Article  Google Scholar 

  7. Cheraghi, N., Lezgy-Nazargah, M., Etemadi, E.: Free vibration analysis of functionally graded magneto-electro-elastic plates resting on elastic foundations with considering interfacial imperfections. Modares Mech. Eng. 19(3), 655–663 (2019)

    Google Scholar 

  8. Bayat, Y., Ghannad, M., Torabi, H.: Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch. Appl. Mech. 82, 229–242 (2012). https://doi.org/10.1007/s00419-011-0552-x

    Article  MATH  Google Scholar 

  9. Van Do, V.N., Chang, K.H., Lee, C.H.: Post-buckling analysis of FGM plates under in-plane mechanical compressive loading by using a mesh-free approximation. Arch. Appl. Mech. 89, 1421–1446 (2019). https://doi.org/10.1007/s00419-019-01512-5

    Article  Google Scholar 

  10. Adiyaman, G., Birinci, A., Öner, E., Yaylacı, M.: Receding contact problem between a functionally graded layer and two homogeneous quarter planes. Acta Mech. 227, 1753–1766 (2016). https://doi.org/10.1007/s00707-016-1580-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Yan, J., Mi, C.: On the receding contact between a homogeneous elastic layer and a half-plane substrate coated with FGMs. Int. J. Comput. Methods 15(1), 1–21 (2018). https://doi.org/10.1142/S0219876218440085

    Article  Google Scholar 

  12. Comez, I.: Continuous and discontinuous contact problem of a functionally graded layer pressed by a rigid cylindrical punch. Eur. J. Mech. A Solids 73, 437–448 (2019). https://doi.org/10.1016/j.euromechsol.2018.10.009

    Article  MathSciNet  MATH  Google Scholar 

  13. Yaylacı, M., Terzi, C., Avcar, M.: Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane. Struct. Eng. Mech. (2019). https://doi.org/10.12989/sem.2019.72.6.000

    Article  Google Scholar 

  14. Yaylacı, M., Avcar, M.: Finite element modeling of contact between an elastic layer and two elastic quarter planes. Comput. Conc. 26(2), 107–114 (2020). https://doi.org/10.12989/cac.2020.26.2.000

    Article  Google Scholar 

  15. Beheshti-Aval, S.B., Lezgy-Nazargah, M.: A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams. Arch. Appl. Mech. 82, 1709–1752 (2012). https://doi.org/10.1007/s00419-012-0621-9

    Article  MATH  Google Scholar 

  16. Izadi, M.H., Hosseini-Hashemi, S., Korayem, M.H.: Analytical and FEM solutions for free vibration of joined cross-ply laminated thick conical shells using shear deformation theory. Arch. Appl. Mech. 88, 2231–2246 (2018). https://doi.org/10.1007/s00419-018-1446-y

    Article  Google Scholar 

  17. Lezgy-Nazargah, M., Vidal, P., Polit, O.: A quasi-3D finite element model for the analysis of thin-walled beams under axial–flexural–torsional loads. Thin Walled Struct. 164, 107811 (2021). https://doi.org/10.1016/j.tws.2021.107811

    Article  Google Scholar 

  18. Haeri, H., Sarfarazi, V., Ebneabbasi, P., Maram, A.N., Shahbazian, A., Marji, M.F., Mohamadi, A.R.: XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2019.117500

    Article  Google Scholar 

  19. Haeri, H., Maleki, M., Shahvali, H., Sarfarazi, V., Marji, M.F.: Evaluating the fragility curve in steel–concrete structure undergoing seismic progressive collapse by Finite Element Method. Iran J. Sci. Technol. Trans. Civ. Eng. (2021). https://doi.org/10.1007/s40996-021-00764-y

    Article  Google Scholar 

  20. Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., Ebneabbasi, P., Marji, M.F., Guo, M.: Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1989730

    Article  Google Scholar 

  21. Sarfarazi, V., Abad, M.B., S.: Failure pattern of perpendicular non-persistent joints beneath the point load of bm’s cutter using experimental test and Finite Element Method. Miner. Resour. Eng. 5(4), 73–94 (2020). https://doi.org/10.30479/jmre.2020.11307.1299

    Article  Google Scholar 

  22. Oner, E., Yaylacı, M., Birinci, A.: Analytical solution of a contact problem and comparison with the results from FEM. Struct. Eng. Mech. 54(4), 607–622 (2015). https://doi.org/10.12989/sem.2015.54.4.607

    Article  Google Scholar 

  23. Lezgy-Nazargah, M., Meshkani, Z.: An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations. Struct. Eng. Mech. 66(5), 665–676 (2018). https://doi.org/10.12989/SEM.2018.66.5.665

    Article  Google Scholar 

  24. Yaylacı, M., Öner, E., Birinci, A.: Comparison between analytical and ANSYS calculations for a receding contact problem. J. Eng. Mech. 140(9), 4014070 (2014). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000781

    Article  Google Scholar 

  25. Yaylacı, M., Adıyaman, E., Öner, E., Birinci, A.: Examination of analytical and finite element solutions regarding contact of a functionally graded layer. Struct. Eng. Mech. 76(3), 325–336 (2020). https://doi.org/10.12989/sem.2020.76.3.325

    Article  MATH  Google Scholar 

  26. Yaylacı, M., Adıyaman, E., Öner, E., Birinci, A.: Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM. Comput. Conc. 27, 199–210 (2021). https://doi.org/10.12989/CAC.2021.27.3.199

    Article  Google Scholar 

  27. Katsikadelis, J., Tsiatas, G.: Buckling load optimization of beams. Arch. Appl. Mech. 74, 790–799 (2005). https://doi.org/10.1007/s00419-005-0402-9

    Article  MATH  Google Scholar 

  28. Sarmadi, H., Entezami, A.: Application of supervised learning to validation of damage detection. Arch. Appl. Mech. 91, 393–410 (2021). https://doi.org/10.1007/s00419-020-01779-z

    Article  Google Scholar 

  29. Hattori, G., Serpa, A.L.: Contact stiffness estimation in ANSYS using simplified models and artificial neural networks. Finite Elem. Anal. Des. 97, 43–53 (2015). https://doi.org/10.1016/j.finel.2015.01.003

    Article  Google Scholar 

  30. Serafińska, A., Graf, W., Kaliske, M.: Artificial neural networks-based friction law for elastomeric materials applied in finite element sliding contact simulations. Compl. Compl. Algorith. Data Driv. Model Learn. Sci. Eng. (2018). https://doi.org/10.1155/2018/4396758

    Article  Google Scholar 

  31. Górski, J., Klepka, A., Dziedziech, K., Mrówka, J., Radecki, R., Dworakowski, Z.: Identification of the stick and slip motion between contact surfaces using artificial neural networks. Nonlinear Dyn. 100, 225–242 (2020). https://doi.org/10.1007/s11071-020-05515-8

    Article  Google Scholar 

  32. Uzun Yaylacı, E., Yaylacı, M., Ölmez, H., Birinci, A.: Artificial neural network calculations for a receding contact problem. Comput. Conc. 25, 6 (2020). https://doi.org/10.12989/cac.2020.25.6.000

    Article  Google Scholar 

  33. Yaylacı, M., Eyüboğlu, A., Adıyaman, G., Uzun Yaylacı, E., Öner, E., Birinci, A.: Assessment of different solution methods for receding contact problems in functionally graded layered mediums. Mech. Mater. (2021). https://doi.org/10.1016/j.me)chmat.2020.103730

    Article  Google Scholar 

  34. Yaylacı, M., Yaylı, M., Uzun Yaylacı, E., Ölmez, H., Birinci, A.: Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron. Struct. Eng. Mech. 78, 585–597 (2021). https://doi.org/10.12989/sem.2021.78.5.585

    Article  Google Scholar 

  35. Öner, E., Şengül Şabano, B., Uzun Yaylacı, E., Adıyaman, G., Yaylacı, M., Birinci, A.: On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods. ZAMM (2022). https://doi.org/10.1002/zamm.202100287

    Article  Google Scholar 

  36. Erdogan, F.: Mixed boundary value problems in mechanics. In: Nemat-Nasser, S. (ed.) Mechanics Today 4. Pergamon Press, New York (1978)

    Google Scholar 

  37. Krenk, S.: On quadrature formulas for singular integral equations of the first and the second kind. Q. Appl. Math. 33, 225–232 (1975)

    Article  MathSciNet  Google Scholar 

  38. Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q.: A multilayer perceptron based medical decision support system for heart disease diagnosis. Exp. Syst. Appl. 30(2), 272–281 (2006). https://doi.org/10.1016/j.eswa.2005.07.022

    Article  Google Scholar 

  39. Cakiroglu, E., Comez, I., Erdol, R.: Application of artificial neural networks to a double receding contact problem with a rigid stamp. Struct. Eng. Mech. 21(2), 205–220 (2005). https://doi.org/10.12989/sem.2005.21.2.205

    Article  Google Scholar 

  40. Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S.: An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput. 23(17), 7941–7958 (2019). https://doi.org/10.1007/s00500-018-3424-2

    Article  Google Scholar 

  41. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000). https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  42. Buntoung, S., Pariyothon, J., Detkhon, P.: Estimation of atmospheric precipitable water in Thailand using an artificial neural network. NUJST. 29(2), 11–20 (2020)

    Google Scholar 

  43. Subasi, A., Ercelebi, E.: Classification of EEG signals using neural network and logistic regression. Comput. Methods Program. Biomed. 78(2), 87–99 (2005). https://doi.org/10.1016/j.cmpb.2004.10.009

    Article  MATH  Google Scholar 

  44. ANSYS Mechanical APDL: ANSYS Contact Technology Guide. Ansys Inc, Canonsburg, Pennsylvania, U.S.A (2013)

    Google Scholar 

  45. He, K., Chang, J., Sun, P.D., B, Yin Z, Li D,: Iterative algorithm for the conformal mapping function from the exterior of a roadway to the interior of a unit circle. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02087-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Yaylacı.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent to participate

No external participants have contributed to the work discussed in this manuscript.

Consent for publication

The authors give their full consent to the editor to publish this article if accepted.

Ethical approval

The authors declare that the research was conducted according to the ethical standards.

Human and animal study

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \begin{aligned} A_{1} = & - (P(D_{2} m_{3} e^{{h\,n_{2} }} - D_{2} m_{4} e^{{h\,n_{2} }} - D_{3} m_{2} e^{h\,n3} + D_{3} m_{4} e^{{h\,n_{3} }} + D_{4} m_{2} e^{{h\,n_{4} }} - D_{4} m_{3} e^{{h\,n_{4} }} ))/\Delta \\ A_{2} = & (P(D_{1} m_{3} e^{{h\,n_{1} }} - D_{1} m_{4} e^{{h\,n_{1} }} - D_{3} m_{1} e^{h\,n3} + D_{4} m_{1} e^{{h\,n_{4} }} + D_{3} m_{4} e^{{h\,n_{3} }} - D_{4} m_{3} e^{{h\,n_{4} }} ))/\Delta \\ A_{3} = & - (P(D_{1} m_{2} e^{{h\,n_{1} }} - D_{2} m_{1} e^{{h\,n_{2} }} - D_{1} m_{4} e^{{h\,n_{1} }} + D_{2} m_{4} e^{{h\,n_{2} }} + D_{4} m_{1} e^{{hn_{4} }} - D_{4} m_{2} e^{{h\,n_{4} }} ))/\Delta \\ A_{4} = & (P(D_{1} m_{2} e^{{h\,n_{1} }} - D_{1} m_{3} e^{{h\,n_{1} }} - D_{2} m_{1} e^{{h\,n_{2} }} + D_{2} m_{3} e^{{h\,n_{2} }} + D_{3} m_{1} e^{{h\,n_{3} }} - D_{3} m_{2} e^{{h\,n_{3} }} ))/\Delta \\ \Delta A = & (e^{{h\,n_{1} }} e^{{h\,n_{2} }} (C_{1} D_{2} m_{3} - C_{2} D_{1} m_{3} - C_{1} D_{2} m_{4} + C_{2} D_{1} m_{4} ) \\ & \;\; + e^{{h\,n_{1} }} e^{{h\,n_{3} }} ( - C_{1} D_{3} m_{2} + C_{3} D_{1} m_{2} + C_{1} D_{3} m_{4} - C_{3} D_{1} m_{4} ) \\ & \;\; + e^{{h\,n_{1} }} e^{{h\,n_{4} }} (C_{1} D_{4} m_{2} - C_{4} D_{1} m_{2} - C_{1} D_{4} m_{3} + C_{4} D_{1} m_{3} ) \\ & \;\; + e^{{h\,n_{2} }} e^{{h\,n_{3} }} (C_{2} D_{3} m_{1} - C_{3} D_{2} m_{1} - C_{2} D_{3} m_{4} + C_{3} D_{2} m_{4} ) \\ & \;\; + e^{{h\,n_{2} }} e^{{h\,n_{4} }} ( - C_{2} D_{4} m_{1} + C_{4} D_{2} m_{1} + C_{2} D_{4} m_{3} - C_{4} D_{2} m_{3} ) \\ & \;\; + e^{{h\,n_{3} }} e^{{h\,n_{4} }} (C_{3} D_{4} m_{1} - C_{4} D_{3} m_{1} - C_{3} D_{4} m_{2} + C_{4} D_{3} m_{2} )) \\ \end{aligned} $$

Appendix 2

$$ \begin{aligned} N(x,t) = & \int\limits_{0}^{\infty } {\frac{\xi (\kappa - 1)}{{2\Delta A}}} \{ [e^{{\left( {n_{1} + n_{2} } \right)h}} \left( {m_{1} m_{4} D_{2} - m_{1} m_{3} D_{2} + m_{2} m_{3} D_{1} - m_{2} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{1} + n_{3} } \right)h}} \left( {m_{1} m_{2} D_{3} - m_{1} m_{4} D_{3} - m_{2} m_{3} D_{1} + m_{3} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{1} + n_{4} } \right)h}} \left( { - m_{1} m_{2} D_{4} + m_{1} m_{3} D_{4} + m_{2} m_{4} D_{1} - m_{3} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{2} + n_{3} } \right)h}} \left( { - m_{1} m_{2} D_{3} + m_{2} m_{4} D_{3} + m_{1} m_{3} D_{2} - m_{3} m_{4} D_{2} } \right) \\ & \;\; + e^{{\left( {n_{2} + n_{4} } \right)h}} \left( {m_{1} m_{2} D_{4} - m_{2} m_{3} D_{4} - m_{1} m_{4} D_{2} + m_{3} m_{4} D_{2} } \right) \\ & \;\; + e^{{\left( {n_{3} + n_{4} } \right)h}} \left( { - m_{1} m_{3} D_{4} + m_{2} m_{3} D_{4} + m_{1} m_{4} D_{3} - m_{2} m_{4} D_{3} } \right) + \frac{\kappa + 1}{8}]\} \sin \xi (t - x){\text{d}}\xi \\ \end{aligned} $$

Appendix 3

$$ \begin{aligned} k(s,r) = & \int\limits_{0}^{\infty } {\frac{{\frac{z}{h}(\kappa - 1)}}{2\Delta A}} \{ [e^{{\left( {n_{1} + n_{2} } \right)h}} \left( {m_{1} m_{4} D_{2} - m_{1} m_{3} D_{2} + m_{2} m_{3} D_{1} - m_{2} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{1} + n_{3} } \right)h}} \left( {m_{1} m_{2} D_{3} - m_{1} m_{4} D_{3} - m_{2} m_{3} D_{1} + m_{3} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{1} + n_{4} } \right)h}} \left( { - m_{1} m_{2} D_{4} + m_{1} m_{3} D_{4} + m_{2} m_{4} D_{1} - m_{3} m_{4} D_{1} } \right) \\ & \;\; + e^{{\left( {n_{2} + n_{3} } \right)h}} \left( { - m_{1} m_{2} D_{3} + m_{2} m_{4} D_{3} + m_{1} m_{3} D_{2} - m_{3} m_{4} D_{2} } \right) \\ & \;\; + e^{{\left( {n_{2} + n_{4} } \right)h}} \left( {m_{1} m_{2} D_{4} - m_{2} m_{3} D_{4} - m_{1} m_{4} D_{2} + m_{3} m_{4} D_{2} } \right) \\ & \;\; + e^{{\left( {n_{3} + n_{4} } \right)h}} \left( { - m_{1} m_{3} D_{4} + m_{2} m_{3} D_{4} + m_{1} m_{4} D_{3} - m_{2} m_{4} D_{3} } \right) + \frac{\kappa + 1}{8}]\} \sin z\left( {\frac{ar}{h} - \frac{as}{h}} \right){\text{d}}z \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaylacı, M., Abanoz, M., Yaylacı, E.U. et al. Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods. Arch Appl Mech 92, 1953–1971 (2022). https://doi.org/10.1007/s00419-022-02159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02159-5

Keywords

Navigation