Skip to main content
Log in

Shape transition and multi-stability of helical ribbons: a finite element method study

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Helical structures are among the most universal building blocks in nature and engineering. In this work, I performed three-dimensional finite element simulations to study the transitions of shapes and multi-stability in the mechanically self-assembled helical structures driven by anisotropic misfit strains. The shape transition between a purely twisted ribbon, or a helicoid, and a general helical ribbon can be achieved by tuning a few relevant geometric and mechanical parameters, including the misfit strains, the geometric misorientation angle, the dimensions, and the mechanical properties of the composite layers. The results of our work show good agreement with the recent theoretical works and will serve as a powerful tool to facilitate on-demand designs of spontaneously curved structures at both macroscopic and microscopic scales, for a number of engineering applications including nanoelecromechanical systems, drug delivery, sensors, drug delivery, active materials, optoelectronics, and microrobotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chouaieb N., Goriely A., Maddocks J.H.: Helices. Proc. Natl. Acad. Sci. USA 103, 9398–9430 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biton Y.Y., Coleman B.D., Swigon D.: On bifurcations of equilibria of intrinsically curved, electrically charged, rod-like structures that model DNA molecules in solution. J. Elast. 87, 187–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Armon S., Efrati E., Kupferman R., Sharon E.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  4. Goriely A., Tabor M.: Spontaneous helix-hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564–1568 (1998)

    Article  Google Scholar 

  5. Gerbode S.J., Puzey J.R., McCormick A.G., Mahadevan L.: How to cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012)

    Article  Google Scholar 

  6. Wang J.S., Wang G., Feng X.Q., Kitamura T., Kang Y.L., Yu S.W., Qin Q.H.: Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013)

    Google Scholar 

  7. Sawa Y., Urayama K., Takigawa T., Gimnez-Pinto V., Mbang B.L., Ye F., Selinger J.V., Selinger R.L.B.: Shape and chirality transitions in off-axis twist nematic elastomer ribbons. Phys. Rev. E 88, 022502 (2013)

    Article  Google Scholar 

  8. Abbott J.J., Peyer K.E., Lagomarsino M.C., Zhang L., Dong L.X., Kaliakatsos I.K., Nelson B.J.: How should microrobots swim?. Int. J. Robot. Res. 28, 1434–1447 (2009)

    Article  Google Scholar 

  9. Ge Q., Qi H.J., Dunn M.L.: Active materials by four-dimension printing. Appl. Phys. Lett. 103, 131901 (2013)

    Article  Google Scholar 

  10. Hamley I.W., Dehsorkhi A., Castelletto V., Furzeland S., Atkins D., Seitsonen J., Ruokolainen J.: Soft Matter 9, 9290–9293 (2013)

    Article  Google Scholar 

  11. Hwang G., Dockendorf C., Bell D., Dong L., Hashimoto H., Poulikakos D., Nelson B.: 3-D InGaAs/GaAs helical nanobelts for optoelectronic devices. Int. J. Optomechatron. 2, 88–103 (2008)

    Article  Google Scholar 

  12. Chen Z., Majidi C., Srolovitz D.J., Haataja M.: Tunable helical ribbons. Appl. Phys. Lett. 98, 011906 (2011)

    Article  Google Scholar 

  13. Chen, Z., Majidi, C., Srolovitz, D.J., Haataja, M.: Continuum elasticity theory approach for spontaneous bending and helicity of ribbons induced by mechanical anisotropy. arXiv:1209.3321

  14. Wang J.S., Feng X.Q., Wang G.F., Yu S.W.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett. 92, 191901 (2008)

    Article  Google Scholar 

  15. Chen Z., Guo Q., Majidi C., Chen W., Srolovitz D.J., Haataja M.: Nonlinear geometric effects in bistable morphing structures. Phys. Rev. Lett. 109, 114302 (2012)

    Article  Google Scholar 

  16. Huang J., Liu J., Kroll B., Bertoldi K., Clarke D.R.: Spontaneous and deterministic three-dimensional curling of pre-strained elastomeric bi-strips. Soft Matter 8, 6291–6300 (2012)

    Article  Google Scholar 

  17. Guo Q., Chen Z., Li W., Dai P., Ren K., Lin J., Taber L.A., Chen W.: Mechanics of tunable helices and geometric frustration in biomimetic seashells. EPL 105, 64005 (2014)

    Article  Google Scholar 

  18. Zhang L., Deckhardt E., Weber A., Schonenberger C., Grutzmacher D.: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nanotechnology 16, 655 (2005)

    Article  Google Scholar 

  19. Zhang L., Ruh E., Grützmacher D., Dong L., Bell D.J., Nelson B.J., Schönenberger C.: Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nano Lett. 6, 1311–1317 (2006)

    Article  Google Scholar 

  20. Guo Q., Zheng H., Chen W., Chen Z.: Finite element simulations on mechanical self-assembly of biomimetic helical structure. J. Mech. Med. Biol. 13, 1340018 (2013)

    Article  Google Scholar 

  21. Suo Z., Ma E.Y., Gleskova H., Wagner S.: Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177 (1999)

    Article  Google Scholar 

  22. Majidi C., Chen Z., Srolovitz D.J., Haataja M.: Theory for the spontaneous bending of piezoelectric nanoribbons: mechanics, spontaneous polarization, and space charge coupling. J. Mech. Phys. Solids 58, 73–85 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Savin T., Kurpios N.A., Shyer A.E., Florescu P., Liang H., Mahadevan L., Tabin C.J.: On the growth and form of the gut. Nature 476, 57–62 (2011)

    Article  Google Scholar 

  24. Wyczalkowski M.A., Chen Z., Filas B.A., Varner V.D., Taber L.A.: Computational models for mechanics of morphogenesis. Birth Defects Res. Part C Embryo Today 96, 132–152 (2012)

    Article  Google Scholar 

  25. Ji X.Y., Zhao M.Q., Wei F., Feng X.Q.: Spontaneous formation of double helical structure due to interfacial adhesion. Appl. Phys. Lett. 100, 263104 (2012)

    Article  Google Scholar 

  26. Duan H.L., Weissmuller J., Wang Y.: Instabilities of core-shell heterostructured cylinders due to diffusions and epitaxy: spheroidization and blossom of nanowires. J. Mech. Phys. Solids 56, 1831–1851 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li B., Feng X.Q., Li Y., Wang G.F.: Morphological instability of spherical soft particle induced by surface charges. Appl. Phys. Lett. 95, 021903 (2009)

    Article  Google Scholar 

  28. Abraham Y., Tamburu C., Klein E., Dunlop J.W.C., Fratzl P., Raviv U., Elbaum R.: Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 9, 640–647 (2012)

    Article  Google Scholar 

  29. Armon S., Aharoni H., Moshe M., Sharon E.: Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10, 2733–2740 (2014)

    Article  Google Scholar 

  30. Li, W., Huang, G., Yan, H., Wang, J., Yu, Y., Hu, X., Wu, X., Mei, Y.: Fabrication and stimuli-responsive behavior of flexible micro-scrolls. Soft Matter 7103–7107 (2012)

  31. Sawa Y. et al.: Shape selection of twist-nematic-elastomer ribbons. Proc. Natl. Acad. Sci. USA 108, 6364–6368 (2011)

    Article  Google Scholar 

  32. Selinger J.V., Spector M.S., Schnur J.M.: Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 105, 7157–7169 (2001)

    Article  Google Scholar 

  33. Oda R., Huc I., Schmutz M., Candau S.J., MacKintosh F.C.: Tuning bilayer twist using chiral counterions. Nature 399, 566–569 (1999)

    Article  Google Scholar 

  34. Teresi L., Varano V.: Modeling helicoids to spiral-ribbon transitions of twist-nematic elastomers. Soft Matter 9, 3081–3088 (2012)

    Article  Google Scholar 

  35. Gibaud T. et al.: Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012)

    Google Scholar 

  36. Childers W.S., Anthony N.R., Mehta A.K., Berland K.M., Lynn D.G.: Phase networks of cross-β peptide assemblies. Langmuir 28, 6386–6395 (2012)

    Article  Google Scholar 

  37. Bellesia G., Fedorov M.V., Timoshenko E.G.: Structural transitions in model β-sheet tapes. J. Chem. Phys. 128, 195105 (2008)

    Article  Google Scholar 

  38. Guo Q., Mehta A.K., Grover M.A., Chen W., Lynn D.G., Chen Z.: Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. 104, 211901 (2014)

    Article  Google Scholar 

  39. Wang H., Upmanyu M.: Saddles, twists, and curls: shape transitions in freestanding nanoribbons. Nanoscale 4, 3620–3624 (2012)

    Article  Google Scholar 

  40. Ghafouri R., Bruinsma R.: Helicoid to spiral ribbon transition. Phys. Rev. Lett. 94, 138101 (2005)

    Article  Google Scholar 

  41. Hyer M.W.: The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J. Compos. Mater. 16, 318–340 (1982)

    Article  Google Scholar 

  42. Kebadze E., Guest S.D., Pellegrino S.: Bistable prestressed shell structures. Int. J. Solids Struct. 41, 2801–2820 (2004)

    Article  MATH  Google Scholar 

  43. Daynes S., Diaconu C.G., Potter K.D., Weaver P.M.: Bistable prestressed symmetric laminates. J. Compos. Mater. 44, 1119–1137 (2010)

    Article  Google Scholar 

  44. Vidoli S., Maurini C.: Tristability of thin orthotropic shells with uniform initial curvature. Proc. R. Soc. A 464, 2949–2966 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lachenal X., Weaver P.M., Daynes S.: Multi-stablecomposite twisting structure for morphing applications. Proc. R. Soc. A 468, 1230–1251 (2012)

    Article  Google Scholar 

  46. Pirrera A., Lachenal X., Daynes S., Weaver P., Chenchiah I.V.: Multi-stable cylindrical lattices. J. Mech. Phys. Solids 61, 2087–2107 (2013)

    Article  Google Scholar 

  47. Forterre Y., Skothelm J.M., Dumais J., Mahadevan L.: How the venus flytrap snaps. Nature 433, 421–425 (2005)

    Article  Google Scholar 

  48. Zheng H., Liu Y., Chen Z.: Fast motion of plants: from biomechanics to biomimetics. J. Postdr. Res. 1, 40–50 (2013)

    Google Scholar 

  49. Shahinpoor M.: Biomimetic robotic venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspir. Biomim. 6, 046004 (2011)

    Article  Google Scholar 

  50. Arrieta A.F., Hagedorn P., Erturk A., Inman D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)

    Article  Google Scholar 

  51. Guo Q., Zheng H., Chen W., Chen Z.: Modeling bistable behaviors in morphing structures through finite element simulations. Bio-Med. Mater. Eng. 24, 557–562 (2014)

    Google Scholar 

  52. Chen Z.: Geometric nonlinearity and mechanical anisotropy in strained helical nanoribbons. Nanoscale 6, 9443–9447 (2014)

    Article  Google Scholar 

  53. Liu J., Huang J., Su T., Bertoldi K., Clarke D.R.: Structural transition from helices to hemihelices. PLoS ONE 9(4), e93183 (2014)

    Article  Google Scholar 

  54. Chopin H., Kudrolli A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013)

    Article  Google Scholar 

  55. Kim T., Zhu L., Mueller L.J., Bardeen C.J.: Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. J. Am. Chem. Soc. 136(18), 6617–6625 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z. Shape transition and multi-stability of helical ribbons: a finite element method study. Arch Appl Mech 85, 331–338 (2015). https://doi.org/10.1007/s00419-014-0967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0967-2

Keywords

Navigation