Abstract
In this work, we present the simulation results of phonon properties, including phonon dispersion relations, group velocities, phonon relaxation time and mode-specific thermal conductivity, of low-dimensional crystals using the newly developed concurrent atomistic–continuum (CAC) method. With significantly less number of degrees of freedoms than all-atom molecular dynamics, the CAC method predicts the phonon properties of one-dimensional (1D) polyatomic crystals at finite temperatures with the full anharmonicity of the atomic interactions being incorporated. Complete phonon branches of polyatomic crystals are obtained by CAC through the phonon spectral energy density analysis. It is shown that CAC allows medium to long-wavelength phonon transport from atomic to coarsely meshed finite element region without the need of special numerical treatment. The frequency-dependent phonon group velocities are explicitly measured in the simulation. Sub-THz phonon lifetimes in 100 -mm-long polyatomic chains containing 400 million of atoms are predicted. Analysis of the phonon mode-specific thermal conductivity shows that the medium to long-wavelength acoustic phonons are contributing to the majority of the heat transport in 1D crystal, suggesting that the long-wavelength phonons effectively act as thermal carriers in 1D system. This work provides a possible explanation for the anomalous heat transport observed in low-dimensional materials.
Similar content being viewed by others
References
Born M., Huang K.: Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford (1956)
Carborg C.F., Shiomi J., Maruyama S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78, 205406 (2008)
Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory. Part I: instantaneous mechanical variables. Physica A 322, 359–376 (2003)
Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory. Part II: balance laws. Physica A 322, 359–376 (2003)
Chen Y., Lee J.D., Eskandarian A.: Examining physical foundation of continuum theories from viewpoint of phonon dispersion relations. Int. J. Eng. Sci. 41, 61–83 (2003)
Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)
Chen Y., Lee J.D.: Atomistic formulation of a multiscale theory for nano/micro physics. Philos. Mag. 85, 4095–4126 (2005)
Chen Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006)
Chen Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009)
Chen Y., Zimmerman J., Krivtsov A., McDowell D.L.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1337–1349 (2011)
Dove M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (1993)
Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)
Eringen A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)
Gale J.D., Rohl A.L.: The general utility lattice program. Mol. Simul. 29, 291–341 (2003)
Hardy R.: Formulas for determining local properties in molecular-dynamics simulations: shock waves. J. Chem. Phys. 76, 622–628 (1982)
Heino P.: Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics. Eur. Phys. J. B 60, 171–179 (2007)
Henry A.S., Chen G.: Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008)
Irving J., Kirkwood J.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 8, 817–829 (1950)
Jund P., Julien R.: Molecular dynamics calculation of the thermal conductivity of Vitreous Silica. Phys. Rev. B 59, 13707–13711 (1999)
Kirkwood J.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946)
Kogure Y., Tsuchiya T., Hiki Y.: Simulations of dislocation configuration in rare gas crystals. J. Phys. Soc. Jpn. 56, 989 (1987)
Kong L.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182, 2201–2207 (2011)
Ladd A.J.C., Moran B., Hoover W.G.: Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B. 34, 5058 (1986)
McGaughey A.J.H., Kaviany M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-model relaxation time approximation. Phys. Rev. B 69, 094303 (2004)
Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids (2014). doi:10.1177/1081286512474016
Rutledge G.C., Lacks D.J., Martonak R., Binder K.: A comparison of quasiharmonic lattice dynamics and Monte Carlo simulation of polymeric crystals using orthorhombic polyethylene. J. Chem. Phys. 108, 10274 (1998)
Schelling P.K., Phillpot S.R., Keblinski P.: Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 80, 2484 (2002)
Thomas J.A., Iutzi R.M., McGaughey A.J.H.: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys. Rev. B 81, 045413 (2010)
Xiong L., Tucker G., McDowell D.L., Chen Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160–177 (2011)
Xiong L., Deng Q., Tucker G., McDowell D.L., Chen Y.: A concurrent scheme for passing dislocations from atomistic to continuum regions. Acta Materialia 60, 899–913 (2012)
Xiong, L., Deng, Q., Tucker, G., McDowell, D.L., Chen, Y.: Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 86–101 (2012)
Xiong L., McDowell D.L., Chen Y.: Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic–continuum method. Script Materialia 67, 633–636 (2012)
Xiong, L., Xu, S., McDowell, D.L., Chen, Y.: Concurrent atomistic–continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. (under review) (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xiong, L., Chen, X., Zhang, N. et al. Prediction of phonon properties of 1D polyatomic systems using concurrent atomistic–continuum simulation. Arch Appl Mech 84, 1665–1675 (2014). https://doi.org/10.1007/s00419-014-0880-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00419-014-0880-8