Skip to main content
Log in

Design and validation of a new fixture for the shear testing of cellular solids

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The design and validation of a new fixture for the shear testing of cellular solids are presented. The fixture is an extended version of a picture-frame shear fixture (EPF) and is suited for comparatively thick rectangular block specimens. The stress state in the specimen is analyzed using a detailed finite element model. The finite element model is based on a 3D CAD model and incorporates friction in the revolute joints. Using specimens with low stiffness, a nearly pure and uniform shear stress state is induced in the specimen. A correction factor for the shear stress is derived which takes into account the friction in the joints and the nonuniformity of the shear stress distribution in the gauge section. The shear response of the polymer foam Rohacell® 200 WF is determined in order to demonstrate the capabilities of the EPF. The strain state is analyzed by means of digital image correlation and is detected to be very pure and uniform on the specimen’s surface, as predicted by the numerical analysis. The shear modulus obtained with the EPF is in good agreement with the calculated shear modulus derived from tensile tests on the same material. In addition, there is only little scatter of the strength values over the tested specimens which further confirms the accuracy of the new fixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gibson L.J., Ashby M.F.: Cellular solids: structure and properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Shutov F.A.: Syntactic polymer foams. Adv. Polym. Sci. 73, 63–123 (1986)

    Article  Google Scholar 

  3. Deshpande V.S., Fleck N.A.: Multi-axial yield behavior of polymer foams. Acta Mater. 49, 1859–1866 (2001)

    Article  Google Scholar 

  4. Bartl F., Klaus H., Dallner R., Huber O.: Material behavior of a cellular composite undergoing large deformations. Int. J. Impact Eng. 36(5), 667–679 (2009)

    Article  Google Scholar 

  5. Lee S., Munro M.: Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites 17(1), 13–22 (1986)

    Article  Google Scholar 

  6. Klaus H., Huber O., Kuhn G.: Lightweight potential of novel cellular spherical composites. Adv. Eng. Mater. 7(12), 1117–1124 (2005)

    Article  Google Scholar 

  7. Huber O., Klaus H., Dallner R., Bartl F., Eigenfeld K., Kovacs B., Godehardt M.: Herstellung und Eigenschaften syntaktischer Metallschäume mit unterschiedlichen Matrix- und Füllmaterialien. Druckguss-Praxis 1, 9–24 (2006)

    Google Scholar 

  8. Diel S., Huber O., Saage H., Steinmann P., Winter W.: Mechanical behavior of a cellular composite under quasi-static, static, and cyclic compression loading. J. Mater. Sci. 47, 5635–5645 (2012)

    Article  Google Scholar 

  9. Bastawros A.F., Bart-Smith H., Evans A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48, 301–322 (2000)

    Article  MATH  Google Scholar 

  10. Andrews E.W. et al.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701–713 (2001)

    Article  MATH  Google Scholar 

  11. Gusev A.A.: Representative volume element size for elastic composites: a numerical study. J. Mech. Phys. Solids 45(9), 1449–1459 (1997)

    Article  MATH  Google Scholar 

  12. Lachihab A., Sab K.: Does a representative volume element exist for fatigue life prediction? The case of aggregate composites. Int. J. Numer. Anal. Methods Geomech. 32, 1005–1021 (2008)

    Article  MATH  Google Scholar 

  13. Sugimura Y., Rabiei A., Evans A.G., Harte A.M., Fleck N.A.: Compression fatigue of a cellular Al alloy. Mat. Sci. Eng. A 269, 38–48 (1999)

    Article  Google Scholar 

  14. Clapper, R.B.: Shear and torsion testing of solid materials—a critical discussion. In: Symposium on shear and torsion testing, ASTM STP 289, American Society for Testing and Materials, pp. 111–120 (1960)

  15. Farley G.L., Baker D.J.: In-plane shear test of thin panels. Exp. Mech. 23(1), 81–88 (1983)

    Article  Google Scholar 

  16. O’Connor D.J.: An evaluation of test methods for shear modulus of sandwich cores. Int. J. Cem. Compos. Lightweight Concr. 6(1), 3–12 (1984)

    Article  Google Scholar 

  17. Chatterjee, S.N., Adams, D.F., Oplinger, D.W.: Test methods for composites: a status report, volume III: shear test methods. Report DOT/FAA/CT-93/17, *III. Federal Aviation Administration, Atlantic City, NJ (1993)

  18. American Society for Testing and Materials: Standard test method for shear properties of sandwich core materials: ASTM C 273, West Conshohocken, PA (2007)

  19. Kelsey S., Gellatly R.A., Clark B.W.: The shear modulus of foil honeycomb cores: a theoretical and experimental investigation in cores used in sandwich construction. Aircr. Eng. Aero. Technol. 30(10), 294–302 (1958)

    Article  Google Scholar 

  20. Iosipescu N.: New accurate procedure for single shear testing of metals. J. Mater. 2(3), 537–566 (1967)

    Google Scholar 

  21. American Society for Testing and Materials: Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D 5379–05. West Conshohocken, PA (2005)

  22. American Society for Testing and Materials: Shear properties of composite materials by the V-notched rail shear method: ASTM D 7078–05. West Conshohocken, PA (2005)

  23. Adams, D.O., Moriarty, J.M., Gallegos, A.M., Adams, D.F.: Development and evaluation of the V-notched rail shear test for composite laminates, NTIS, DOT/FAA/AR-03/63 (2003)

  24. American Society for Testing and Materials: Standard test method for in-plane shear properties of polymer matrix composite materials by the rail shear method: ASTM D 4255, West Conshohocken, PA (1983)

  25. Arcan M., Hashin Z., Voloshin A.: A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp. Mech. 18, 141–146 (1978)

    Article  Google Scholar 

  26. Hung S.C., Liechti K.M.: Finite element analysis of the Arcan specimen for fiber reinforced composites under pure shear and biaxial loading. J. Compos. Mater. 33, 1288–1316 (1999)

    Article  Google Scholar 

  27. Mohr D., Doyoyo M.: A new method for the biaxial testing of cellular solids. Exp. Mech. 43(2), 173–182 (2003)

    Article  Google Scholar 

  28. American Society for Testing and Materials: Standard test method for in-plane shear properties of hoop wound polymer matrix composite cylinders: ASTM D 5448. West Conshohocken, PA (1993)

  29. Papka S.D., Kyriakides S.: Biaxial crushing of honeycombs—Part I: experiments. Int. J. Solids Struct. 36, 4367–4396 (1999)

    Article  MATH  Google Scholar 

  30. American Society for Testing and Materials: Standard test methods for structural panels in shear through-the-thickness: ASTM D 2719–89. West Conshohocken, PA (2007)

  31. Bryan, E.L.: Photoelastic investigation of the panel shear test for plywood. In: Symposium on shear and torsion testing, ASTM STP 289, American Society for Testing and Materials, pp. 90–94 (1961)

  32. Dastin S., Lubin G., Munyak J., Slobodzinski A.: Mechanical properties and test techniques for reinforced plastic laminates. ASTM STP 460, 13–26 (1969)

    Google Scholar 

  33. Terry G.: A comparative investigation of some methods of unidirectional, in-plane shear characterization of composite materials. Composites 10(4), 233–237 (1979)

    Article  Google Scholar 

  34. Kennedy, J.M., Farley, G.L., Barnett, T.: Analysis of the picture frame in-plane shear test for composite materials. In: Proceedings AIAA/ASME/ASCA/AHS 28th SDM Conference, pp. 402-407 (1987)

  35. Lomov S.V., Willems A., Verpoest I., Zhu Y., Barburski M., Stoilova T.: Picture frame test of woven composite reinforcements with a full-field strain registration. Text. Res. J. 76(3), 243–252 (2006)

    Article  Google Scholar 

  36. Basan, R., Trappe, V.: Bestimmung der Schubeigenschaften von Faserverbundwerkstoffen mittels eines Schubrahmens. In: Proceedings of Deutscher Luft- und Raumfahrtkongress, Aachen (2009)

  37. Niu M.: Airframe structural design. Adasa Adastra Engineering Center, Granada Hills (1999)

    Google Scholar 

  38. Wiedemann J.: Leichtbau: Elemente und Konstruktion. Springer, Berlin (2006)

    Google Scholar 

  39. Ogden R.W.: Non-linear elastic deformations. Dover, New York (1984)

    Google Scholar 

  40. Diel, S., Huber, O.: Entwicklung und Evaluierung einer Schubversuchsvorrichtung auf Basis einer Schubfeldkonstruktion für statische und zyklische Beanspruchungen. In: Huber, O., Bicker, M. (eds.) Proceedings of the 5. Landshuter Leichtbau-Colloquium, Landshut, pp. 57–69 (2011)

  41. Penzien J., Didriksson T.: Effective shear modulus of honeycomb cellular structure. AIAA J. 2(3), 531–535 (1964)

    Article  Google Scholar 

  42. Niemann G., Winter H., Höhn B.R.: Maschinenelemente, vol. 1. Springer, Berlin (2005)

    Google Scholar 

  43. Kraatz, A.: Anwendung der Invariantentheorie zur Berechnung des dreidimensionalen Versagens- und Kriechverhaltens von geschlossenzelligen Schaumstoffen unter Einbeziehung der Mikrostruktur. Dissertation, University Halle-Wittenberg, Germany (2007)

  44. Zenkert, D., Burman, M.: Tension, compression and shear fatigue of a closed cell foam. In: Kageyama, K., et al. (eds.) Proceedings of the 16th International Conference on Composite Materials (ICEM-16). Kyoto (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Diel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diel, S., Huber, O., Steinmann, P. et al. Design and validation of a new fixture for the shear testing of cellular solids. Arch Appl Mech 84, 309–321 (2014). https://doi.org/10.1007/s00419-013-0801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0801-2

Keywords

Navigation