Skip to main content
Log in

Rotordynamic model for electromagnetic excitation caused by an eccentric and angular rotor core in an induction motor

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper shows a rotordynamic model for electromagnetic excitation caused by an eccentric and angular rotor core in an induction motor. It is shown that an eccentric rotor core leads to an electromagnetic force and an angular rotor core to an electromagnetic moment, which both force the rotor to vibrate. For these two kinds of magnetic unbalance, a rotordynamic model was developed considering the influence of the oil film stiffness and damping of the sleeve bearings, the stiffness of the end-shields and bearing housings, the stiffness of the rotor, the electromagnetic stiffness—radial and angular electromagnetic stiffness—the mass moment of inertia and the gyroscopic effect of the rotor. With this model, the absolute orbits of the shaft centre, the shaft journals and the bearing housings can be calculated, as well as the relative orbits between the shaft journals and the bearing housings. Additionally, the bearing housing velocities can also be computed. In addition to the mathematical derivation of the model, also a numerical example is shown for clarification. The aim of the paper is, on the one hand, to show the mathematical coherences—based on an analytical model—between rotordynamics and the electromagnetics for an induction motor with an eccentric and angular rotor core and, on the other hand, to derive a calculation method for evaluating the vibration sensitivity regarding these two different kinds of magnetic unbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friswell M.I., Penny J.E.T, Garvey S.D., Lees A.W.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Vance J.M., Zeidan F.J., Murphy B.: Machinery Vibration and Rotordynamics. Wiley, Hoboken (2010)

    Book  Google Scholar 

  3. Rao J.S.: Rotor Dynamics. Wiley, New York (1996)

    Google Scholar 

  4. Gasch R., Nordmann R., Pfützner H.: Rotordynamik. Springer, Berlin (2002)

    Google Scholar 

  5. Smith A.C., Dorrell D.G.: Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. I. Analytical model electric power applications. IEE Proc. 143(3), 193–201 (1996)

    Google Scholar 

  6. Stoll R.L.: Simple computational model for calculating the unbalanced magnetic pull on a two-pole turbogenerator rotor due to eccentricity. IEE Proc. Electr. Power Appl. 144(4), 263–270 (1997)

    Article  Google Scholar 

  7. Schuisky W.: Magnetic pull in electrical machines due to the eccentricity of the rotor. Electr. Res. Assoc. Trans. 295, 391–399 (1972)

    Google Scholar 

  8. Seinsch H.-O.: Oberfelderscheinungen in Drehfeldmaschinen. Teubner-Verlag, Stuttgart (1992)

    Google Scholar 

  9. Holopainen, T.P.: Electromechanical interaction in rotor dynamics of cage induction motors. VTT Technical Research Centre of Finland, Ph. D. Thesis, Helsinki University of Technology, Finland (2004)

  10. Arkkio A., Antila M., Pokki K., Simon A., Lantto E.: Electromagnetic force on a whirling cage rotor. IEE. Proc. Electr. Power Appl. 147(5), 353–360 (2000)

    Article  Google Scholar 

  11. Werner, U.: Rotordynamische Analyse von Asynchronmaschinen. Dissertation, Technical University of Darmstadt (2006)

  12. Werner, U.; Binder, A.: Rotor dynamic analysis of asynchronous machines including the Finite-Element-Method of engineering low vibration motors. International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM, Taormina, Italy, pp. 20–28, (2006)

  13. Werner U.: Mathematical analysis of rotor shaft displacements in asynchronous machines; a critical speed or just a rotation of the orbit axis. ZAMM- J. Appl. Math. Mech. 89(7), 514–535 (2009)

    Article  MATH  Google Scholar 

  14. Reynolds, O.: On the Theory of Lubrication. Philosophical Transaction of the Royal Society, Vol. 177, London (1886)

  15. Glienicke J.: Feder- und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluss auf das Schwingungsverhalten eines einfachen Rotors. Dissertation, Technische Hochschule Karlsruhe (1966)

  16. Lund J., Thomsen K.: A Calculation Method and Data for the Dynamics of Oil Lubricated Journal Bearings in Fluid Film Bearings and Rotor Bearings System Design and Optimization, pp. 1–28. ASME, New York (1978)

    Google Scholar 

  17. Tondl A.: Some Problems of Rotor Dynamics. Chapman & Hall, London (1965)

    Google Scholar 

  18. IEC 60034-14. Rotating electrical machines—part 14: Mechanical vibration of certain machines with shaft heights 56 mm and higher—Measurement, evaluation and limits of vibration severity. International Electrotechnical Commission (2007)

  19. ANSI /API 541. Form-wound-Squirrel-Cage Induction Motors-500 Horse power and Larger, API (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, U. Rotordynamic model for electromagnetic excitation caused by an eccentric and angular rotor core in an induction motor. Arch Appl Mech 83, 1215–1238 (2013). https://doi.org/10.1007/s00419-013-0743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0743-8

Keywords

Navigation