Skip to main content
Log in

On the effect of inflow conditions in simulation of a turbulent round jet

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The \({k-\varepsilon}\) model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity, turbulence intensity, turbulence kinetic energy, and turbulence dissipation rate on flow field characteristics are examined. Results showed that the present simulations in both types of nozzles are in good agreement with experiments when considering the appropriate inflow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c1, c2, c μ :

\({k-\varepsilon}\) Turbulence model constants

D :

Circular nozzle diameter (m)

F :

Function of r which fitted to u in/u in, cl velocity measured from experiment

G :

Function of r which fitted to v in/u in, cl velocity measured from experiment

I :

Turbulence intensity

J :

Function of r which fitted to axial turbulence intensity measured from experiment at x/D = 0.28

L x , L r :

Length of the computational domain (m)

Re :

Reynolds number based on Hydraulic diameter

u, v, w:

Time-averaged velocity components in the x and r direction (m s−1)

\({\sqrt{u^{\prime 2}},\,\sqrt{v^{\prime 2}}}\) :

Root mean square of fluctuating velocity in x and r direction (m s−1)

x, r, θ:

Cylindrical coordinate of domain

r 1/2 :

Half-velocity width in the r direction based on the u-velocity \([{u(r_{1/2} )=\frac{1}{2}u_{\rm cl}}]\) (m)

μ :

Dynamic viscosity (N s m−2)

μ t :

Eddy viscosity (N s m−2)

ρ :

Density (Kg m−3)

\(\sigma_{\kappa },\,{\sigma_{\varepsilon }}\) :

\({k-\varepsilon}\) Turbulence model constant

ave.:

Average

cl :

At the jet centerline

in :

At inlet plane of jet

References

  1. Quinn W.: Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur. J. Mech. B Fluids 25, 279–301 (2006)

    Article  MATH  Google Scholar 

  2. Wygnanski I., Fiedler H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612 (1969)

    Article  Google Scholar 

  3. Rodi W.: A new method of analyzing hot-wire signals in highly turbulent flow, and its evaluation in a round jet. DISA Info 17, 9–18 (1975)

    Google Scholar 

  4. Panchapasekan N.R., Lumley J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 1: air jet. J. Fluid Mech. 246, 197–223 (1993)

    Article  Google Scholar 

  5. Rajaratnam N.: Turbulent Jets. Elsevier, New York (1976)

    Google Scholar 

  6. Schlichting H.: Boundary-Layer Theory. McGraw-Hill, New York (1968)

    Google Scholar 

  7. Sami S., Carmody T., Rouse H.: Jet diffusion in the region of flow establishment. J. Fluid Mech. 27, 231–252 (1967)

    Article  Google Scholar 

  8. Hill B.J.: Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. J. Fluid Mech. 51, 773–779 (1972)

    Article  Google Scholar 

  9. Boguslawski L., Popiel Cz.O.: Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90, 531–539 (1979)

    Article  Google Scholar 

  10. Obot N.T., Graska M.L., Trabold T.A.: The near field behaviour of round jets at moderate Reynolds numbers. Can. J. Chem. Eng. 62, 587–593 (1984)

    Article  Google Scholar 

  11. Bradbury L.J.S.: The structure of a self-preserving turbulent planar jet. J. Fluid Mech. 23, 31–64 (1965)

    Article  Google Scholar 

  12. Gutmark E., Wygnanski I.: The planar turbulent jet. J. Fluid Mech. 73(3), 465–495 (1976)

    Article  Google Scholar 

  13. Heskestad G.: Hot-wire measurements in a plane turbulent jet. Trans. ASME J. Appl. Mech. 32, 721–734 (1965)

    Google Scholar 

  14. Van der Hegge Zijnen B.G.: Measurements of the distribution of heat and matter in a plane turbulent jet of air. Appl. Sci. Res. A 7, 277–292 (1958)

    Google Scholar 

  15. Gutmark E.J., Grinstein F.F.: Flow control with non-circular jets. Ann. Rev. Fluid Mech. 31, 239–272 (1999)

    Article  Google Scholar 

  16. Mi J., Nathan G.J., Nobes D.S.: Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe. J. Fluids Eng. 123, 878–883 (2001)

    Article  Google Scholar 

  17. Antonia R.A., Zhao Q.: Effects of initial conditions on a circular jet. Exp. Fluids 31, 319–323 (2001)

    Article  Google Scholar 

  18. Mi, J., Nathan, G.J.: Mean velocity decay of axisymmetric turbulent jets with different initial velocity profiles. In: Proceedings of 4th International Conference on Fluid Mechanics, Dalian (2004)

  19. Hussain A.K.M.F., Zedan M.F.: Effect of the initial conditions of the axisymmetric free shear layer: effect of initial momentum thickness. Phys. Fluids 21, 1100–1112 (1978)

    Article  Google Scholar 

  20. Holdo A.E., Simpson B.A.F.: Simulation of high-aspect-ratio jets. Int. J. Numer. Methods Fluids 39, 343–359 (2002)

    Article  Google Scholar 

  21. Quinn W.R., Militzer J.: Effects of nonparallel exit flow on round turbulent free jets. Int. J. Heat Fluid Flow 10(2), 139–145 (1989)

    Article  Google Scholar 

  22. Berg J.R., Ormiston S.J., Soliman H.M.: Prediction of the flow structure in a turbulent rectangular free jet. Int. Commun. Heat Mass Transf. 33, 552–563 (2006)

    Article  Google Scholar 

  23. Habli S., Mhiri H., Golli S.E., Palec G.L., Bournot P.: Numerical study of inflow conditions on an axisymmetric turbulent jet. Int. J. Therm. Sci. 40, 497–511 (2001)

    Article  Google Scholar 

  24. Goldschmidt, V.W., Bradshaw, P.: Effect of nozzle exit turbulence on the spreading (or widening) rate of plane free jets. In: Joint Engineering, Fluid Engineering and Applied Mechanics Conference, ASME, vol. 1–7, Boulder, June 22–24 (1981)

  25. Deo R.C., Mi J., Nathan G.J.: The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp. Therm. Fluid Sci. 32, 545–559 (2007)

    Article  Google Scholar 

  26. Quinn W.R.: Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio. Exp. Therm. Fluid Sci. 5, 203–215 (1992)

    Article  Google Scholar 

  27. Faghani, E., Maddahian, R., Faghani, P., Farhanieh, B.: Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio. Arch. Appl. Mech. doi:10.1007/s00419-009-0340-z

  28. Faghani E., Saemi S., Maddahian R., Farhanieh B.: Numerical investigation of corner angle and wing number effects on fluid flow characteristics of a turbulent stellar jet. Heat Mass Transf. 46, 25–37 (2009)

    Article  Google Scholar 

  29. Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  30. Givi P., Ramos J.I.: On the calculation of heat and momentum transport in a round jet. Int. Commun. Heat Mass Transf. 11, 173–182 (1984)

    Article  Google Scholar 

  31. Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  32. van Leer B.: Toward the ultimate conservative difference scheme. Monotonocity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  33. Davidson, L., Farhanieh, B.: CALC-BFC: A Finite-Volume Code Employing Collocated Variable Arrangement and Cartesian Velocity Components for Computation of Fluid Flow and Heat Transfer in Complex Three-Dimensional Geometries. Department of Thermo and Fluid Dynamics, Chalmers university of Technology, Rept. 91/14 (1991)

  34. Amiri S., Habibi K., Faghani E., Ashjaee M.: Mixed convection cooling of a heated circular cylinder by laminar upward-directed slot jet impingement. Heat Mass Transf. 46, 225–236 (2009)

    Article  Google Scholar 

  35. Pope S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  36. Malmstrom T.G., Kirkpatrick A.T., Christensen B. et al.: Centreline velocity decay measurements in low-velocity axisymmetric jets. J. Fluid Mech. 346, 363–377 (1997)

    Article  Google Scholar 

  37. Mi J., Nathan G.J., Luxton R.E.: Centreline mixing characteristics of jets from nine differently shaped nozzles. Exp. Fluids 28, 93–94 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Faghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghani, E., Saemi, S.D., Maddahian, R. et al. On the effect of inflow conditions in simulation of a turbulent round jet. Arch Appl Mech 81, 1439–1453 (2011). https://doi.org/10.1007/s00419-010-0494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0494-8

Keywords

Navigation