Skip to main content
Log in

Ultrasound propagation in cancellous bone

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Wave propagation in fluid-saturated cancellous bone is studied on the basis of two approaches: The thermodynamic-consistent Theory of Porous Media (TPM) and Biot’s theory. Phase velocities in the low-frequency range, calculated with the Biot-Gassmann relations, Wyllie’s equation and the TPM, are demonstrating that a simple, so-called hybrid biphasic TPM model is able to capture the main acoustical effects in cancellous bones. Furthermore, an extension towards high-frequency wave propagation is discussed on the basis of the constitutive relations for the momentum exchange of the fluid and the solid phases. Further numerical results show that, in the high-frequency (ultrasound) range a viscous correction as well as an added mass effect (tortuosity) needs to be taken into account to explain experimentally obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkmann R., Glüer C.C.: Quantitativer Ultraschall. Radiologe 46, 861–869 (2006)

    Article  Google Scholar 

  2. Berryman J.G.: Confirmation of Biot’s theory. Appl. Phys. Lett. 37, 382–384 (1980)

    Article  Google Scholar 

  3. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low-frequency range. J. Acoust. Soc. Am. 29, 168–191 (1956)

    Article  MathSciNet  Google Scholar 

  4. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High-frequency range. J. Acoust. Soc. Am. 29, 168–191 (1956)

    Article  MathSciNet  Google Scholar 

  5. Biot M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biot M.A., Willis D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  7. Bluhm J.: Zur Berücksichtigung der Kompressibilität des Festkörpers bei porösen Materialien. Z. angew. Math. Mech. 77, S39–S40 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boltzmann L.: Zur Theorie der elastischen Nachwirkung. Sitzber Kgl Akad Wiss Wien 70, 275–306 (1874)

    Google Scholar 

  9. Cederbaum G., Li L.P., Schulgasser K.: Poroelastic Structures. Elsevier, Amsterdam (2000)

    Google Scholar 

  10. de Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Diebels, S.: Mikropolare Zweiphasenmodelle: Modellierung auf der Basis der Theorie Poröser Medien. Habilitationsschrift, Institut für Mechanik (Bauwesen), Nr. II-4, Universität Stuttgart (2000)

  12. Dubs B.: Quantitativer Ultraschall (Osteosonometrie) in der Osteoporosediagnostik. Ortopädie 31, 176–180 (2002)

    Article  Google Scholar 

  13. Ehlers, W., Bluhm, J. (eds): Porous Media. Springer, Berlin (2002)

    MATH  Google Scholar 

  14. Evans J.A., Tavakoli M.B.: Ultrasonic attenuation and velocity in bone. Phys. Med. Biol. 35, 1387–1396 (1990)

    Article  Google Scholar 

  15. Gassmann F.: Über die Elastizität poröser Medien. Vierteljahresschrift d Naturf Ges Zürich 96, 1–23 (1951)

    MathSciNet  Google Scholar 

  16. Gibson L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18, 317–328 (1985)

    Article  Google Scholar 

  17. Gibson L.J., Ashby M.F.: Cellular Solids. Structure and Properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  18. Glüer C.C.: Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J. Bone Miner. Res. 12, 1280–1288 (1997)

    Article  Google Scholar 

  19. Haiat G., Padilla F., Peyrin F., Lauqier P.: Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy. J. Acoust. Soc. Am. 123, 1694–1705 (2008)

    Article  Google Scholar 

  20. Haire T.J., Langton C.M.: Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24, 291–295 (1999)

    Article  Google Scholar 

  21. Hassanizadeh S.M., Gray W.G.: High velocity flow in porous media. Trans. Porous Media 2, 521–531 (1987)

    Article  Google Scholar 

  22. Hosokawa A., Otani T.: Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101, 1–5 (1997)

    Article  Google Scholar 

  23. Hughes E.R., Leighton T.G., Petley G.W., White P.R.: Ultrasonic propagation in cancellous bone: a new stratified model. Ultrasound Med. Biol. 25, 811–821 (1999)

    Article  Google Scholar 

  24. Hughes E.R., Leighton T.G., Petley G.W., White P.R., Chivers R.C.: Estimation of critical and viscous frequencies for Biot theory in cancellous bone. Ultrasonics 41, 365–368 (2003)

    Article  Google Scholar 

  25. Johnson D.L., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid. Mech. 176, 379–402 (1987)

    Article  MATH  Google Scholar 

  26. Johnson M.W., Chakkalakal D.A., Harper R.A., Katz J.L., Rouhana S.W.: Fluid flow in bone in vitro. J. Biomech. 15, 881–885 (1982)

    Article  Google Scholar 

  27. Kaufman J.J., Luo G., Siffert R.S.: Ultrasound simulation in bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1205–1218 (2008)

    Article  Google Scholar 

  28. Kelder, O.: Frequency-dependent wave propagation in water-saturated porous media. Ph.D. thesis, Delft University of Technology (1998)

  29. Kirchner N.: Thermodynamnically consistent modelling of abrasive granular materials. I. Non-equilibrium-theory. Proc. R. Soc. Lond. A 458, 2153–2176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Langton C.M., Njeh C.F.: The measurement of broadband ultrasonic attenuation in cancellous bone—a review of the science and technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1546–1554 (2008)

    Article  Google Scholar 

  31. Langton C.M., Palmer S.B., Porter R.W.: The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 13, 89–91 (1984)

    Article  Google Scholar 

  32. Lee K.I., Yoon S.W.: Comparison of acoustic characteristics predicted by Biot’s theory and the modified Biot-Attenborough model in cancellous bone. J. Biomech. 39, 364–368 (2006)

    Article  Google Scholar 

  33. Mavko G., Mukerji T., Dvorkin J.: The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  34. McKelvie M.L., Palmer S.B.: The interaction of ultrasound with cancellous bone. Phys. Med. Biol. 36, 1331–1340 (1991)

    Article  Google Scholar 

  35. Njeh C.F., Boivin C.M., Langton C.M.: The role of ultrasound in the management of osteoporosis: a review. Osteoporos. Int. 7, 7–22 (1997)

    Article  Google Scholar 

  36. Nowinski J.L., Davis C.F.: A model of the human skull as a poroelastic spherical shell subjected to a quasistatic load. Math. Biosci. 8, 397–416 (1970)

    Article  MATH  Google Scholar 

  37. Nowinski J.L., Davis C.F.: The flexure and torsion of bones viewed as anisotropic poroelastic bodies. Int. J. Eng. Sci. 10, 1063–1079 (1972)

    Article  MATH  Google Scholar 

  38. Smeulders D.M.J.: Experimental evidence for slow compressional waves. J. Eng. Meth-ASCE 131, 908–917 (2005)

    Article  Google Scholar 

  39. Wilmański, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Med. (32), 21–47 (1998)

  40. Wilmański K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)

    Article  Google Scholar 

  41. Wyllie M.R.J., Gregory A.R., Gardner L.W.: Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41–70 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Steeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeb, H. Ultrasound propagation in cancellous bone. Arch Appl Mech 80, 489–502 (2010). https://doi.org/10.1007/s00419-009-0385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0385-z

Keywords

Navigation