Skip to main content
Log in

Dynamics and stability of turbocharger rotors

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper discusses the bifurcation and stability behavior of (automotive) turbochargers with full-floating ring bearings. Turbocharger rotors exhibit a highly nonlinear behavior due to the nonlinearities introduced by the floating ring bearings. A flexible multibody model of the rotor/bearing system is presented. Numerical run-up simulations are compared with corresponding test rig measurements. The nonlinear oscillation effects are thoroughly investigated by means of simulated and measured rotor vibrations. The influence of various system parameters on the bifurcation behavior of the rotor/bearing system is analyzed. The article examines rotors supported in full-floating ring bearings with plain circular bearing geometry in the inner and outer oil gap. By recapitulating the well-known oil whirl and oil whip phenomena for single and double oil film bearings, the paper gives an overview on the fundamental dynamic effects occurring in turbocharger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers C.J.: Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. ASME J. Appl. Mech. 51, 244–250 (1984)

    Article  MATH  Google Scholar 

  2. Shaw J., Shaw S.W.: The effects of unbalance on oil whirl. Nonlinear Dyn. 1, 293–311 (1990)

    Article  Google Scholar 

  3. Sundararajan P., Noah S.T.: Dynamics of forced nonlinear systems using shooting/arc-length continuation method— application to rotor systems. J. Vib. Acoust. Trans. ASME 119(1), 9–20 (1997)

    Article  Google Scholar 

  4. Wang J.K., Khonsari M.M.: Bifurcation analysis of a flexible rotor supported by two fluid-film journal bearings. J. Tribol. Trans. ASME 128(3), 594–603 (2006)

    Article  Google Scholar 

  5. Schweizer, B.: Oil Whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings. J. Nonlinear Dyn. (2009). doi:10.1007/s11071-009-9466-3

  6. Schweizer, B.: Total instability of turbocharger rotors—physical explanation of the dynamic failure of rotors with full-floating ring bearings. J. Sound Vib. (2009). doi:10.1016/j.jsv.2009.03.028

  7. Loos, M., Wohlrab, R.: Experimentelle und theoretische Untersuchungen zum Einfluss der Gestaltung der Gleitlagerung auf das Stabilitätsverhalten eines Turboladerrotors. VDI Berichte, S. 139–152 (1992)

  8. Born, H.R.: Analytical & experimental investigation of the stability of the rotor-bearing system of a new small turbocharger. ASME Paper 87-GT-110, Gas Turbine Conference, Anaheim California (1987)

  9. de Carvalho Michalski M.A., Zindeluk M., de Oliveira Rocha R.: Influence of journal bearing axial grooves on the dynamic behavior of horizontal rotors. Shock Vib. 13(4–5), 285–300 (2006)

    Google Scholar 

  10. Hagedorn P.: Nonlinear Oscillations, 2 nd Edn. Oxford University Press, London (1988)

    Google Scholar 

  11. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations, Reprint Edition. Wiley, New York (1995)

    Google Scholar 

  12. Schweizer B., Sievert M.: Nonlinear oscillations of automotive turbocharger turbines. J. Sound Vib. 321, 955–975 (2009). doi:10.1016/j.jsv.2008.10.013

    Article  Google Scholar 

  13. Schweizer, B.: Vibrations and bifurcations of turbocharger rotors. In: SIRM 2009—8th International Conference on Vibrations in Rotating Machines, Paper-ID 23, Vienna, Austria, 23–25 February (2009), ISBN 978-3-200-01412-1

  14. Childs D.: Turbomachinery Rotordynamics. Wiley, New York (1993)

    Google Scholar 

  15. Gasch R., Nordmann R., Pfützner H.: Rotordynamik. Springer, Berlin (2002)

    Google Scholar 

  16. Müller P.C.: Allgemeine lineare Theorie für Rotorsysteme ohne oder mit kleinen Unsymmetrien. Ingenieur-Archiv 51, 61–74 (1981)

    Article  MATH  Google Scholar 

  17. Rao J.S.: Rotor Dynamics. Wiley, New York (1991)

    Google Scholar 

  18. Wang J.K., Khonsari M.M.: On the hysteresis phenomenon associated with instability of rotor-bearing systems. J. Tribol. Trans. ASME 128(1), 188–196 (2006)

    Article  Google Scholar 

  19. Argyris J., Faust G., Haase M.: An Exploration of Chaos. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  20. Moser, F.: Stabilität und Verzweigungsverhalten eines nichtlinearen Rotor-Lager-Systems. Ph.D. thesis, Technical University of Vienna, Austria (1993)

  21. Boyaci, A., Steinhilber, G., Seemann, W., Proppe, C.: Zur Stabilität eines in Gleitlagern laufenden elastischen Rotors. In: SIRM 8th International Conference on Vibrations in Rotating Machines, Paper-ID 18, Vienna, Austria, 23–25 February (2009), ISBN 978-3-200-01412-1

  22. Schilder F., Ruebel J., Starke J., Osinga H., Krauskopf B., Inagaki M.: Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts. Nonlinear Dyn. 51(4), 529–539 (2008)

    Article  MATH  Google Scholar 

  23. Shaw, M.C., Nussdorfer, T.J.: An Analysis of the Full-Floating Journal Bearing. NACA Report, 866 (1947)

  24. Kettleborough C.F.: Frictional experiments on lightly-loaded fully floating ring bearings. Aust. J. Appl. Sci. 5, 211–220 (1954)

    Google Scholar 

  25. Hill H.C.: Slipper bearings and vibration control in small gas turbines. Trans. ASME 80, 1756–1764 (1958)

    Google Scholar 

  26. Tatara A.: Vibration suppressing effect of floating bush bearings, report of the research group of high-speed rotating machinery. J. JSME 72, 1565–1569 (1969)

    Google Scholar 

  27. Tanaka M., Hori Y.: Stability characteristics of floating bush bearings. ASME J. Lubr. Technol. 94, 248–259 (1972)

    Google Scholar 

  28. Tanaka, M., Hori, Y., Nasuda, T.: A theoretical stability analysis of floating bush journal bearing. In: Proceedings of the Japan Society of Mechanical Engineers, vol. 750, 6, pp. 153–156 (1975)

  29. Tanaka, M.: A theoretical analysis of stability characteristics of high-speed floating bush bearings. In: IMechE Conference Transactions of Sixth International Conference on Vibrations in Rotating Machinery, pp. 133–142 (1996)

  30. Tatara A.: An experimental study of the stabilizing effect of floating-bush journal bearings. Bull. JSME 13(61), 858–863 (1970)

    Google Scholar 

  31. Trippett R.J.: Measured and predicted friction in floating-ring bearings. SAE Trans. 95, 1470–1476 (1986)

    Google Scholar 

  32. Trippett R.J., Li D.F.: High-speed floating-ring bearing test and analysis. ASLE Trans. 27(1), 73–81 (1984)

    Google Scholar 

  33. Clarke D.M., Fall C., Hayden G.N., Wilkinson T.S.: A steady-state model of a floating ring bearing including thermal effects. ASME J. Tribol. 114(1), 141–149 (1992)

    Article  Google Scholar 

  34. Meyer, A.: Äußere Lagerdämpfung für sehr hochtourige, gleitgelagerte Rotoren. Ph.D Thesis, University of Karlsruhe, Germany (1987)

  35. Koeneke C.E., Tanaka M., Motoi H.: Axial oil film rupture in high speed bearings due to the effect of the centrifugal force. ASME J. Tribol. 117, 394–398 (1995)

    Article  Google Scholar 

  36. Hatakenaka K., Tanaka M., Suzuki K.: A theoretical analysis of floating bush journal bearing with axial oil film rupture being considered. ASME J. Tribol. 124, 494–505 (2002)

    Article  Google Scholar 

  37. San Andres, L., Kerth, J.: Thermal effects on the performance of floating ring bearings for turbochargers. In: Proceedings Instn Mech. Engineers. Part J, J. Eng. Tribol., vol. 218, pp. 437–450 (2004)

  38. Holt C., San Andres L.: Test response and nonlinear analysis of a turbocharger supported on floating ring bearings. J. Vib. Acoust. 127, 107–115 (2005)

    Article  Google Scholar 

  39. San Andrés L., Rivadeneira J.C., Gjika K., Groves C., LaRue G.: Rotordynamics of small turbochargers supported on floating ring bearings—highlights in bearing analysis and experimental validation. ASME J. Tribol. 129, 391–397 (2007)

    Article  Google Scholar 

  40. San Andrés L., Rivadeneira J.C., Chinta M., Gjika K., LaRue G.: Nonlinear rotordynamics of automotive turbochargers—predictions and comparisons to test data. ASME J. Eng. Gas Turbines Power 129, 488–493 (2007)

    Article  Google Scholar 

  41. Tanaka, M.: A parametric study of the stability of high-speed floating bush journal bearings. In: Proceedings of the 6th IFToMM, International Conference on Rotor Dynamics, Sydney, vol. 2, pp. 549–555 (2002)

  42. Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings. Nonlinear Dyn. (2009). doi:10.1007/s11071-008-9403-x

  43. Wang J.K., Khonsari M.M.: Application of Hopf bifurcation theory to rotor-bearing systems with consideration of turbulent effects. Tribol. Int. 39(7), 701–714 (2006)

    Article  Google Scholar 

  44. Wang J.K., Khonsari M.M.: Influence of inlet oil temperature on the instability threshold of rotor-bearing systems. J. Tribol. Trans. ASME 128(2), 319–326 (2006)

    Article  Google Scholar 

  45. Deepak J.C., Noah S.T.: Experimental verification of subcritical whirl bifurcation of a rotor supported on a fluid film bearing. J. Tribol. Trans. ASME 120(3), 605–609 (1998)

    Article  Google Scholar 

  46. Khonsari M.M., Chang Y.J.: Stability boundary of nonlinear orbits within clearance circle of journal bearings. J. Vib. Acoust. Trans. ASME 115(3), 303–307 (1993)

    Article  Google Scholar 

  47. Sundararajan P., Noah S.T.: An algorithm for response and stability of large order non-linear systems—application to rotor systems. J. Sound Vib. 214(4), 695–723 (1998)

    Article  Google Scholar 

  48. Craig R.R., Bampton M.C.: Coupling of substructures for dynamics analysis. AIAA J. 6, 1313–1319 (1968)

    Article  MATH  Google Scholar 

  49. Shabana A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  50. Eich-Soellner, E., Fuehrer, C.: Numerical Methods in Multibody Dynamics. Teubner (1988)

  51. Gear C.W., Leimkuhler B., Gupta G.K.: Automatic integration of euler-lagrange equations with constraints. J. Comput. Appl. Math. 12&13, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  52. Hairer E., Wanner G.: Solving Ordinary Differential Equations 2: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  53. Brewe D.E., Khonsari M.M.: Effect of shaft frequency on cavitation in a journal bearing for noncentered circular whirl. Tribol. Trans. 31(1), 54–60 (1988)

    Article  Google Scholar 

  54. Lu, X., Khonsari, M.M.: An experimental study of oil-lubricated journal bearings undergoing oscillatory motion. J. Tribol. Trans. ASME 130(2):021702 1–7 (2008)

    Google Scholar 

  55. Cameron A.: Basic Lubrication Theory. Horwood, Chichester (1981)

    Google Scholar 

  56. Khonsari M.M., Booser E.R.: Applied Tribology, 2nd edn. Wiley, New York (2008)

    Google Scholar 

  57. Szeri A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, London (2005)

    Google Scholar 

  58. Goenka P.K.: Dynamically loaded journal bearings: finite element method analysis. Trans. ASME J. Tribol. 106, 429–439 (1984)

    Article  Google Scholar 

  59. Kumar A., Booker J.F.: A finite element cavitation algorithm. ASME J. Tribol. 113, 261–276 (1991)

    Google Scholar 

  60. Schweizer, B.: Numerical approach for solving reynolds equation with JFO boundary conditions incorporating ALE techniques. ASME J. Tribol. 131(1), (2009). doi:10.1115/1.2991170

  61. Lund, J.W.: Stability and damped critical speeds of a flexible rotor in fluid film bearings. J. Eng. Ind. ASME 509 (1974)

  62. Muszynska A.: Whirl and whip—rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  63. Muszynska A.: Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 127(1), 49–64 (1988)

    Article  MathSciNet  Google Scholar 

  64. Muszynska, A.: The fluid force model in rotating machine clearances identified by modal testing and model applications: an adequate interpretation of the fluid-induced instabilities. In: Iscorma-2, International Symposium on Stability Control of Rotating Machinery, South Lake Tahoe, California (2001)

  65. Guo Z., Kirk R.G.: Instability boundary for rotor-hydrodynamic bearing systems, part 1: jeffcott rotor with external damping. J. Vib. Acoust. 125(4), 417–422 (2003)

    Article  Google Scholar 

  66. Guo Z., Kirk R.G.: Instability boundary for rotor-hydrodynamic bearing systems, part 2: rotor with external flexible damped support. J. Vib. Acoust. 125(4), 423–426 (2003)

    Article  Google Scholar 

  67. Den Hartog I.P.: Mechanische Schwingungen 2. Auflage, Berlin (1952)

    MATH  Google Scholar 

  68. Someya T.: Stabilität einer in zylindrischen Gleitlagern laufenden, unwuchtfreien Welle. Ingenieur-Archiv 23, 85–108 (1963)

    Article  Google Scholar 

  69. Someya, T.: Schwingungs- und Stabilitätsverhalten einer in zylindrischen Gleitlagern laufenden Welle mit Unwucht. VDI-Forschungsheft 510 (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schweizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweizer, B. Dynamics and stability of turbocharger rotors. Arch Appl Mech 80, 1017–1043 (2010). https://doi.org/10.1007/s00419-009-0331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0331-0

Keywords

Navigation