Skip to main content
Log in

A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting

  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this contribution we present a phenomenological mesoscopic thermodynamically consistent model for the description of switching processes in ferroelectric materials that is able to describe the fundamental electromechanical hysteresis effects. The main goal is to develop a representation using the set of independent variables, the strains and the electric field, in a coordinate-invariant setting. This formulation is particularly suitable for the treatment of a variety of complex boundary-value problems (BVP) with regard to the essential boundary conditions. Here we restrict ourselves to transversely isotropic solids. The anisotropic behavior is governed by isotropic tensor functions that depend on a finite set of invariants. Thus the material symmetry requirements are automatically fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. I. Basic equations. Int J Eng Sci 26, 1279–1295 (1988)

    Google Scholar 

  2. Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. II. Poling of ceramics. Int J Eng Sci 26, 1297–1306 (1988)

    Google Scholar 

  3. Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. III. Parameter identification. Int J Eng Sci 27, 975–987 (1989)

    Google Scholar 

  4. Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. IV. Combined electromechanical loading. Int J Eng Sci 27, 989–1000 (1989)

    Google Scholar 

  5. Boehler, J.P.: Introduction to the invariant formulation of anisotropic constitutive equations. In: Boehler, J.P. (ed.) Applications of tensor functions in solid mechanics. CISM Course no. 292. Springer, Berlin Heidelberg New York (1987)

  6. Boehler, J.P.: Representations for isotropic and anisotropic non-polynominal tensor functions. In: Boehler, J.P. (ed.) Applications of Tensor Functions in Solid Mechanics. CISM Course no. 292. Springer, Berlin Heidelberg New York (1987)

  7. Chen, P.J., Montgomery, S.T.: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23, 199–208 (1980)

    Google Scholar 

  8. Chen, P.J., Tucker, T.J.: One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching. Int J Eng Sci 19, 147–158 (1981)

    Google Scholar 

  9. Cocks, A.C.F., McMeeking, R.M.: A phenomenological constitutive law for the behavior of ferroelectric ceramics. Ferroelectrics 228, 219–228 (1999)

    Google Scholar 

  10. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Vol. 1, Foundations and Solid Media. Springer, Berlin Heidelberg New York (1990)

  11. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Vol. 2, Fluid and Complex Media. Springer, Berlin Heidelberg New York (1990)

  12. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurg Material 43, 2073–2084 (1995)

    Google Scholar 

  13. Hwang, S.C., McMeeking R.: The prediction of switching in polycrystalline ferroelectric ceramics. Ferroelectrics 207, 465–495 (1998)

    Google Scholar 

  14. Hwang, S.C., McMeeking R.: A finite element model of ferroelectric polycrystals. Ferroelectrics 211, 177–194 (1998)

    Google Scholar 

  15. Hwang, S.C., McMeeking R.: A finite element model of ferroelastic polycrystals. Int J Solids Struct 36, 1541–1556 (1999)

    Google Scholar 

  16. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic, London (1971)

  17. Kamlah, M., Tsakmakis, C.: Phenomenological modelling of the non-linear electro-mechanical coupling in ferroelectrics. Int J Solids Struct 36, 669–695 (1999)

    Google Scholar 

  18. Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38, 605–633 (2001)

    Google Scholar 

  19. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics–-modeling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13, 219–268 (2001)

    Google Scholar 

  20. Kamlah, M., Wang, Z.: A thermodynamically and microscopically motivated constitutive model for piezoceramics. Comput Mat Sci 28, 409–418 (2003)

    Google Scholar 

  21. Landis, C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J Mech Phys Solids 50, 127–152 (2002)

    Google Scholar 

  22. Landis, C.M.: A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55, 613–628 (2002)

    Google Scholar 

  23. Lemaitre, J., Chaboche J.-L.: Mechanics of solid materials. Cambridge University Press, Cambridge (1990)

  24. Liu, I-Shih: On representations of anisotropic invariants. Int J Eng Sci 20, 1099–1109 (1982)

    Google Scholar 

  25. Luenberger, D.G.: Linear and nonlinear programming. Addison-Wesley, Reading, MA (1984)

  26. Lupascu, D.C., Rödel, J.: Fatigue in bulk lead zirconate actuator materials: a review. Report des Institutes Nictqtmetalliscq-Auorganiscqe Werkstoffe der TV-Darmstadt (2004)

  27. Lynch, C.S.: On the development of multiaxial phenomenological constitutive laws for ferroelectric ceramics. J Intell Mat Syst Struct 9, 555–563 (1998)

    Google Scholar 

  28. McMeeking, R.M., Landis, C.M.: A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int J Eng Sci 40, 1553–1577 (2002)

    Google Scholar 

  29. Mielke, A., Timofte, A.M.: An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. WIAS Preprint No. 1014 (2005)

  30. Nowacki, W.: Foundations of linear piezoelectricity. In: Parkus, H. (ed.) Electromagnetic Interactions in Elastic Solids. CISM course no. 257. Springer, Berlin Heidelberg New York (1979)

  31. Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73, 533–552 (2004)

    Google Scholar 

  32. Smith, G.F.: On a fundamental error in two papers of C.C. Wang. Arch Rat Mech Anal 36, 161–165 (1970)

    Google Scholar 

  33. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 19, 899–916 (1971)

    Google Scholar 

  34. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, Vol. 1. Academic, New York (1971)

  35. Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: Boehler, J.P. (ed.) Applications of Tensor Functions in Solid Mechanics. CISM course no. 282. Springer, Berlin Heidelberg New York (1987)

  36. Wang, C.C.: On representations for isotropic functions: Part I. Isotropic functions of symmetric tensors and vectors. Arch Rat Mech Anal 33, 249–267 (1969)

    Google Scholar 

  37. Wang, C.C.: On representations for isotropic functions: Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors and vectors. Arch Rat Mech Anal 33, 268–287 (1969)

    Google Scholar 

  38. Zheludev, I.S.: Physics of Polycrystalline Dielectrics. Vol. 2, Electrical Properties. Plenum, New York (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, J., Romanowski, H. A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch Appl Mech 74, 863–877 (2005). https://doi.org/10.1007/s00419-005-0412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-005-0412-7

Keywords

Navigation