Skip to main content
Log in

Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Tissue damage triggers innate immune response mediated by Toll-like receptor 4 (TLR) that recognizes endogenous host danger molecules associated with cell death and tissue inflammation, although the precise role of TLR-4 signaling in muscle tissue repair is still uncertain. Previously, we observed that TLR-4 exerted a protective effect preventing excessive muscular damage induced by Bothrops jararacussu crude venom. This study aimed to evaluate the involvement of TLR-4 at early stages of muscular tissue remodeling in distinct mouse strains after injection of purified snake venom. Muscular injury was induced by injection of 25 µl (0.05 mg/ml) of cardiotoxin (CTX) from Naja mossambica in the gastrocnemius muscle of C3H/HeN (wild-type); C3H/HeJ mice that express a non-functional TLR-4 receptor, C57BL/6 and Tlr4 −/− (B6 background) mice. Comparing to control, Tlr4 −/− mice presented at early stages (3 DPI) of muscle injury mild inflammation with low MMP-9 activity, scarce macrophage infiltration and premature change to anti-inflammatory phenotype, low TNF-α mRNA levels and reduced myogenin expression, with low regeneration and tissue remodeling. The presence of more Ly6Cneg macrophages in Tlr4 −/− mice at 3 DPI indicates that TLR-4 may influence the differentiation into Ly6Cneg or likely affect proliferation of such cells in the muscle. The present study shows that TLR-4 deficiency and genetic background influence the outcome of muscular tissue repair in aseptic lesions and yet still maintaining some level of signaling in the TLR4-mutant mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. doi:10.3389/fimmu.2014.00491

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa AM, Villaverde AB, Guimaraes-Souza L, Ribeiro W, Cogo JC, Zamuner SR (2008) Effect of low-level laser therapy in the inflammatory response induced by Bothrops jararacussu snake venom. Toxicon 51(7):1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59(10):791–808. doi:10.1007/s00011-010-0208-2

    Article  CAS  PubMed  Google Scholar 

  • Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, Yada M, Pohlman TH, Verrier ED (2004) Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128(2):170–179

    Article  CAS  PubMed  Google Scholar 

  • Czerwinska AM, Streminska W, Ciemerych MA, Grabowska I (2012) Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochem Cytobiol 50(1):144–153. doi:10.2478/18710

    Article  PubMed  Google Scholar 

  • Dourado DM, Favero S, Matias R, Carvalho Pde T, da Cruz-Hofling MA (2011) Low-level laser therapy promotes vascular endothelial growth factor receptor-1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochem Photobiol 87(2):418–426. doi:10.1111/j.1751-1097.2010.00878.x

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JE, Jiang MS, Gong QH, Yudkowsky ML, Wieland SJ (1991) Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C. Toxicon 29(12):1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20(8):857–869. doi:10.1038/nm.3653

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Wang H, Hu P (2015) Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 72(9):1663–1677. doi:10.1007/s00018-014-1819-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg K, Corona BT, Walters TJ (2015) Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 6:87. doi:10.3389/fphar.2015.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Giordano C, Mojumdar K, Liang F, Lemaire C, Li T, Richardson J, Divangahi M, Qureshi S, Petrof BJ (2015) Toll-like receptor 4 ablation in mdx mice reveals innate immunity as a therapeutic target in Duchenne muscular dystrophy. Hum Mol Genet 24(8):2147–2162. doi:10.1093/hmg/ddu735

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  • Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42(8):933–945. doi:10.1016/j.toxicon.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  • Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102(1):196–202

    Article  CAS  PubMed  Google Scholar 

  • Hindi SM, Kumar A (2016) Toll-like receptor signalling in regenerative myogenesis: friend and foe. J Pathol 239(2):125–128. doi:10.1002/path.4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impellizzeri D, Ahmad A, Di Paola R, Campolo M, Navarra M, Esposito E, Cuzzocrea S (2015) Role of Toll like receptor 4 signaling pathway in the secondary damage induced by experimental spinal cord injury. Immunobiology 220(9):1039–1049. doi:10.1016/j.imbio.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  • Kaczorowski DJ, Nakao A, McCurry KR, Billiar TR (2009) Toll-like receptors and myocardial ischemia/reperfusion, inflammation, and injury. Curr Cardiol Rev 5(3):196–202. doi:10.2174/157340309788970405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M, Fardeau M, Alameddine HS (1999) Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 205(1):158–170

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Cha HN, Jo HJ, Song IH, Baek SH, Dan JM, Kim YW, Kim JY, Lee IK, Seo JS, Park SY (2015) TLR2 deficiency attenuates skeletal muscle atrophy in mice. Biochem Biophys Res Commun 459(3):534–540. doi:10.1016/j.bbrc.2015.02.144

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy JK, Singh A, Gowthaman U, Wu R, Gorrepati P, Sales Nascimento M, Gallman A, Liu D, Rhebergen AM, Calabro S, Xu L, Ranney P, Srivastava A, Ranson M, Gorham JD, McCaw Z, Kleeberger SR, Heinz LX, Muller AC, Bennett KL, Superti-Furga G, Henao-Mejia J, Sutterwala FS, Williams A, Flavell RA, Eisenbarth SC (2015) Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci USA 112(10):3056–3061. doi:10.1073/pnas.1501554112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M (2014) Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 5:3039. doi:10.1038/ncomms4039

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25(1):358–369. doi:10.1096/fj.10-171579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdy MA, Lei HY, Wakamatsu J, Hosaka YZ, Nishimura T (2015) Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 202:18–27. doi:10.1016/j.aanat.2015.07.002

    Article  PubMed  Google Scholar 

  • Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16. doi:10.1002/eji.200636910

    Article  CAS  PubMed  Google Scholar 

  • McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22(1):20–27. doi:10.1016/j.coi.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Melton DW, Roberts AC, Wang H, Sarwar Z, Wetzel MD, Wells JT, Porter L, Berton MT, McManus LM, Shireman PK (2016) Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol 100(5):1011–1025. doi:10.1189/jlb.3MA0316-104R

    Article  CAS  PubMed  Google Scholar 

  • Micera A, Balzamino BO, Di Zazzo A, Biamonte F, Sica G, Bonini S (2016) Toll-like receptors and tissue remodeling: the Pro/Cons recent findings. J Cell Physiol 231(3):531–544. doi:10.1002/jcp.25124

    Article  CAS  PubMed  Google Scholar 

  • Mojumdar K, Liang F, Giordano C, Lemaire C, Danialou G, Okazaki T, Bourdon J, Rafei M, Galipeau J, Divangahi M, Petrof BJ (2014) Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR2. EMBO Mol Med 6(11):1476–1492. doi:10.15252/emmm.201403967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounier R, Theret M, Arnold L, Cuvellier S, Bultot L, Goransson O, Sanz N, Ferry A, Sakamoto K, Foretz M, Viollet B, Chazaud B (2013) AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251–264. doi:10.1016/j.cmet.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. doi:10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura Y, Tajrishi MM, Sato S, Hindi SM, Kumar A (2014) Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Develop Biol 2:11. doi:10.3389/fcell.2014.00011

    Article  Google Scholar 

  • Oshima-Franco Y, Leite GB, Belo CA, Hyslop S, Prado-Franceschi J, Cintra AC, Giglio JR, da Cruz-Hofling MA, Rodrigues-Simioni L (2004) The presynaptic activity of bothropstoxin-I, a myotoxin from Bothrops jararacussu snake venom. Basic Clin Pharmacol Toxicol 95(4):175–182. doi:10.1111/j.1742-7843.2004.pto_950405.x

    Article  CAS  PubMed  Google Scholar 

  • Paiva-Oliveira EL, Ferreira da Silva R, Correa Leite PE, Cogo JC, Quirico-Santos T, Lagrota-Candido J (2012) TLR4 signaling protects from excessive muscular damage induced by Bothrops jararacussu snake venom. Toxicon 60(8):1396–1403

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V, Jardi M, Caelles C, Serrano AL, Munoz-Canoves P (2011) p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol 195(2):307–322. doi:10.1083/jcb.201104053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues VM, Lopes DS, Castanheira LE, Gimenes SN, Naves de Souza DL, Ache DC, Borges IP, Yoneyama KA, Rodrigues RS (2015) Bothrops pauloensis snake venom toxins: the search for new therapeutic models. Curr Top Med Chem 15(7):670–684

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Dilworth FJ (2013) Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 280(17):3991–4003. doi:10.1111/febs.12188

    Article  CAS  PubMed  Google Scholar 

  • Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H, Golenbock D, Beutler B, Gallo RL (2007) Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 282(25):18265–18275

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol

  • Tidball JG, Dorshkind K, Wehling-Henricks M (2014) Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 141 (6):1184–1196. doi:10.1242/dev.098285

  • Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F, Poliska S, Ardjoune H, Juban G, Nagy L, Chazaud B (2016) Highly Dynamic Transcriptional Signature of Distinct Macrophage Subsets during Sterile Inflammation, Resolution, and Tissue Repair. J Immunol 196(11):4771–4782. doi:10.4049/jimmunol.1502490

    Article  CAS  PubMed  Google Scholar 

  • Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Melton DW, Porter L, Sarwar ZU, McManus LM, Shireman PK (2014) Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am J Pathol 184(4):1167–1184. doi:10.1016/j.ajpath.2013.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan R, Geng S, Chen K, Diao N, Chu HW, Li L (2016) Low-grade inflammatory polarization of monocytes impairs wound healing. J Pathol 238(4):571–583. doi:10.1002/path.4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Ao L, Cleveland JC, Zeng Q, Reece TB, Fullerton DA, Meng X (2015) Toll-like receptor 4 mediates the inflammatory responses and matrix protein remodeling in remote non-ischemic myocardium in a mouse model of myocardial ischemia and reperfusion. PLoS One 10(3):e0121853. doi:10.1371/journal.pone.0121853

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Leu SW, Shi L, Dedaj R, Zhao G, Garg HG, Shen L, Lien E, Fitzgerald KA, Shiedlin A, Shen H, Quinn DA, Hales CA (2010) TLR4 is a negative regulator in noninfectious lung inflammation. J Immunol 184(9):5308–5314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Nina Cortez and Bartira Davi for technical assistance. Financial support from FAPERJ (Fundação de Amparo a Pesquisa do Rio de Janeiro, E-26.111/459/2013) and PROPPI (UFF). EPO was supported by fellowship from CAPES (Brazil) and RFS by a fellowship from REUNI Program (Brazil).

Author contributions

JML-C contributed to the conception of the idea, in the drafting and intellectual content of the manuscript; and in the decision to submit for publication. EPO, RFS contributed to the literature search, experimental procedures. MB and TQ-S contributed to critical evaluation of intellectual content, and editing the manuscript. All authors reviewed and accepted the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussara Lagrota-Candido.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial or non-financial interests in relation to the present manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva-Oliveira, E.L., da Silva, R.F., Bellio, M. et al. Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem Cell Biol 148, 49–60 (2017). https://doi.org/10.1007/s00418-017-1556-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1556-6

Keywords

Navigation