Skip to main content

Advertisement

Log in

A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) from various animals undergo spontaneous transformation in vitro, establishing some malignant characteristics. However, this phenomenon seems seldom appearing in human (h) MSCs. To address the question whether the hMSCs really do not undergo the spontaneous transformation and why, the present study compared MSCs from two species under the same conditions, the commercialized primary hMSCs whose in vitro life span is very uniform, and the rat (r) MSCs whose spontaneous transformation in vitro is well-defined. It was demonstrated that in rMSCs, there were small numbers of re-proliferating cells appearing after a substantial senescent period. These “senescence-escaped” rMSCs were highly proliferative and did not show any sign of growth arrest during the following subcultures up to observed passage 32. Whereas after entering senescence, hMSCs no longer re-proliferated and finally died from apoptosis. Compared with rMSCs, the hMSCs possessed a much shorter telomere, and lacked both telomerase reverse transcriptase expression and telomerase activity. When proliferating from pre-senescent to senescent stages, the hMSCs had a greater loss of relative telomere length (51 % in hMSC vs. 15 % in rMSC), but both cells displayed a similar average telomere shortening per population doubling (0.50 ± 0.06 kb in rMSC vs. 0.49 ± 0.06 kb in hMSC; p > 0.05), indicating that the greater relative shortening of the hMSC telomeres was due to their original shorter length, rather than lack of telomere maintenance mechanisms. In conclusion, the hMSCs do not spontaneously initiate transformation, because they cannot escape senescence. This is particularly due to their much shorter telomere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah BM, Haack-Sorensen M, Burns JS, Elsnab B, Jakob F, Hokland P, Kassem M (2005) Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem Biophys Res Commun 326:527–538

    Article  CAS  PubMed  Google Scholar 

  • Ahmadbeigi N, Shafiee A, Seyedjafari E, Gheisari Y, Vassei M, Amanpour S, Amini S, Bagherizadeh I, Soleimani M (2011) Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif 44:67–74

    Article  CAS  PubMed  Google Scholar 

  • Aisner DL, Wright WE, Shay JW (2002) Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 12:80–85

    Article  CAS  PubMed  Google Scholar 

  • Bentzon JF, Stenderup K, Hansen FD, Schroder HD, Abdallah BM, Jensen TG, Kassem M (2005) Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 330:633–640

    Article  CAS  PubMed  Google Scholar 

  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  CAS  PubMed  Google Scholar 

  • Busuttil RA, Rubio M, Dollé MET, Campisi J, Vijg J (2003) Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2:287–294

    Article  CAS  PubMed  Google Scholar 

  • Cherif H, Tarry JL, Ozanne SE, Hales CN (2003) Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res 31:1576–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 41:909–922

    Article  CAS  PubMed  Google Scholar 

  • Dubois SG, Floyd EZ, Zvonic S, Kilroy G, Wu X, Carling S, Halvorsen YD, Ravussin E, Gimble JM (2008) Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol 449:69–79

    PubMed  Google Scholar 

  • Furlani D, Li W, Pittermann E, Klopsch C, Wang L, Knopp A, Jungebluth P, Thedinga E, Havenstein C, Westien I, Ugurlucan M, Li RK, Ma N, Steinhoff G (2009) A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart. Cell Transplant 18:319–331

    Article  PubMed  Google Scholar 

  • Garcia S, Bernad A, Martin MC, Cigudosa JC, Garcia-Castro J, de la Fuente R (2010) Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 316:1648–1650

    Article  CAS  PubMed  Google Scholar 

  • Hertzog RG (2006) Ancestral telomere shortening: a countdown that will increase mean life span? Med Hypotheses 67:157–160

    Article  CAS  PubMed  Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodes RJ (1999) Telomere length, aging, and somatic cell turnover. J Exp Med 190:153–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108:1340–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kogler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P (2005) Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol 33:573–583

    Article  PubMed  Google Scholar 

  • Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB, Montrose M, Houghton J (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67:10889–10898

    Article  CAS  PubMed  Google Scholar 

  • Li M, Jayandharan GR, Li B, Ling C, Ma W, Srivastava A, Zhong L (2010) High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 21:1527–1543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E, Campana D (2003) Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 120:846–849

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    Article  PubMed  Google Scholar 

  • Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de BI, de Jong D, van Pel M, Cleton-Jansen AM, Hogendoorn PC (2009) Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 219:294–305

    Article  CAS  PubMed  Google Scholar 

  • Moioli EK, Hong L, Guardado J, Clark PA, Mao JJ (2006) Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells. Tissue Eng 12:537–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116:2519–2530

    Article  CAS  PubMed  Google Scholar 

  • Myllymaa S, Kaivosoja E, Myllymaa K, Sillat T, Korhonen H, Lappalainen R, Konttinen YT (2010) Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon. J Mater Sci Mater Med 21:329–341

    Article  CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  Google Scholar 

  • Payne NL, Dantanarayana A, Sun G, Moussa L, Caine S, McDonald C, Herszfeld D, Bernard CC, Siatskas C (2012) Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adhes Migr 6:179–189

    Article  Google Scholar 

  • Pogue B, Estrada AH, Sosa-Samper I, Maisenbacher HW, Lamb KE, Mincey BD, Erger KE, Conlon TJ (2013) Stem-cell therapy for dilated cardiomyopathy: a pilot study evaluating retrograde coronary venous delivery. J Small Anim Pract 54:361–366

    Article  CAS  PubMed  Google Scholar 

  • Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Kim YJ, Jo JY, Yoon EJ, Choi HJ, Kwon E (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20:1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Wang J, Zhu W, Guan Y, Zou C, Chen Z, Zhang YA (2011) Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro. Exp Cell Res 317:2950–2957

    Article  CAS  PubMed  Google Scholar 

  • Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314:1937–1944

    Article  CAS  PubMed  Google Scholar 

  • Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, Bjerkvig R, Schichor C (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339

    Article  CAS  PubMed  Google Scholar 

  • Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T, Kassem M (2004) Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23:5095–5098

    Article  CAS  PubMed  Google Scholar 

  • Son NH, Murray S, Yanovski J, Hodes RJ, Weng N (2000) Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J Immunol 165:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  PubMed  Google Scholar 

  • Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105:157–167

    Article  PubMed  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173

    Article  CAS  PubMed  Google Scholar 

  • Tan F, O’Neill F, Naciri M, Dowling D, Al-Rubeai M (2012) Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomater 8:1627–1638

    Article  CAS  PubMed  Google Scholar 

  • Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis MA, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379

    Article  CAS  PubMed  Google Scholar 

  • Torsvik A, Molven A, Immervoll H (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track-letter. Cancer Res 70:6393–6396

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3:e2213

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK (2005) Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7:509–519

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Mohseny AB, Hogendoorn PC, Cleton-Jansen AM (2013) Mesenchymal stem cell transformation and sarcoma genesis. Clin Sarcoma Res 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Han Z, Kong Q, Wang J, Sun B, Wang G, Mu L, Wang D, Liu Y, Li H (2010) Malignant transformation of rat bone marrow-derived mesenchymal stem cells treated with 4-nitroquinoline 1-oxide. Chem Biol Interact 188:119–126

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, He L, Wan Y, Song J (2013) H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 22:256–267

    Article  CAS  PubMed  Google Scholar 

  • Zhou YF, Bosch-Marce M, Okuyama H, Krishnamachary B, Kimura H, Zhang L, Huso DL, Semenza GL (2006) Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res 66:10849–10854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the grant from the National Natural Science Foundation of China [30971475].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Zheng, Y., Wan, Y. et al. A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape. Histochem Cell Biol 142, 257–267 (2014). https://doi.org/10.1007/s00418-014-1210-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1210-5

Keywords

Navigation