Skip to main content

Advertisement

Log in

The peroxisome: an update on mysteries

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Peroxisomes contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, which render them indispensable to human health and development. Peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. In recent years, the interest in peroxisomes and their physiological functions has significantly increased. This review intends to highlight recent discoveries and trends in peroxisome research, and represents an update as well as a continuation of a former review article. Novel exciting findings on the biological functions, biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross-talk of peroxisomes with other subcellular compartments are addressed. Furthermore, recent findings on the role of peroxisomes in the brain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

FA:

Fatty acid

MDVs:

Mitochondria-derived vesicles

Pex:

Peroxin

PMP:

Peroxisomal membrane protein

PPAR:

Peroxisome proliferator-activated receptor

PTS:

Peroxisomal targeting signal

ROS:

Reactive oxygen species

VLCFA:

Very long-chain fatty acids

References

  • Agrawal G, Joshi S, Subramani S (2011) Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc Natl Acad Sci USA 108:9113–9118

    Article  PubMed  CAS  Google Scholar 

  • Agrimi G, Russo A, Scarcia P, Palmieri F (2011) The Human Gene Slc25a17 Encodes a Peroxisomal Transporter of Coenzyme a, Fad and Nad+. Biochem J (Epub ahead of print)

  • Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521

    Article  PubMed  CAS  Google Scholar 

  • Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sa-Miranda C, Azevedo JE (2009) Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway. J Biol Chem 284:27243–27251

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Kwak Y, Simha R, Donaldson RP (2009) Hydrogen peroxide induced oxidation of peroxisomal malate synthase and catalase. Arch Biochem Biophys 491:25–31

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Navarro MA, Sanchez-Pulido L, McBride HM (2009) Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr Opin Cell Biol 21:560–567

    Article  PubMed  CAS  Google Scholar 

  • Angermüller S, Islinger M, Volkl A (2009) Peroxisomes and reactive oxygen species, a lasting challenge. Histochem Cell Biol 131:459–463

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Hiltunen JK (2011) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta (Epub ahead of print)

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Rokka A, Sormunen RT, Benz R, Hiltunen JK (2005) Solute traffic across mammalian peroxisomal membrane–single channel conductance monitoring reveals pore-forming activities in peroxisomes. Cell Mol Life Sci 62:2886–2895

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Mindthoff S, Grunau S, Erdmann R, Hiltunen JK (2009) An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates. Int J Biochem Cell Biol 41:2546–2554

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240

    Article  PubMed  CAS  Google Scholar 

  • Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291–1304

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Hu J (2011) The Arabidopsis Tail-Anchored Protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 Is Involved in the Morphogenesis and Proliferation of Peroxisomes and Mitochondria. Plant Cell 23:4446–4461

    Article  PubMed  CAS  Google Scholar 

  • Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Baerends RJ, Faber KN, Kiel JA, van der Klei IJ, Harder W, Veenhuis M (2000) Sorting and function of peroxisomal membrane proteins. FEMS Microbiol Rev 24:291–301

    Article  PubMed  CAS  Google Scholar 

  • Bagattin A, Hugendubler L, Mueller E (2010) Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci USA 107:20376–20381

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011a) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewska M, Opalinski L, Veenhuis M, van der Klei IJ (2011b) The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 33:1921–1931

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Volkl A, Pill J, Fahimi HD (1990) Proliferation of peroxisomes without simultaneous induction of the peroxisomal fatty acid beta-oxidation. FEBS Lett 264:5–9

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Volkl A, Fahimi HD (1993) The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy. Virchows Arch B Cell Pathol Incl Mol Pathol 63:139–146

    Article  PubMed  CAS  Google Scholar 

  • Berg RK, Melchjorsen J, Rintahaka J, Diget E, Soby S, Horan KA, Gorelick RJ, Matikainen S, Larsen CS, Ostergaard L, Paludan SR, Mogensen TH (2012) Genomic HIV RNA Induces Innate Immune Responses through RIG-I-Dependent Sensing of Secondary-Structured RNA. PLoS ONE 7:e29291

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt K, Wilkinson S, Weber AP, Linka N (2012) A peroxisomal carrier delivers NAD and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J 69:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R (2011) PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 124:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Bonekamp NA, Volkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. BioFactors 35:346–355

    Article  PubMed  CAS  Google Scholar 

  • Bonekamp NA, Sampaio P, Luers GH, Schrader M (2010a) Peroxisomal dynamics: do mammalian peroxisomes fuse with each other? In: Open European peroxisome meeting 2010. Lunteren, The Netherlands

  • Bonekamp NA, Vormund K, Jacob R, Schrader M (2010b) Dynamin-like protein 1 at the Golgi complex: a novel component of the sorting/targeting machinery en route to the plasma membrane. Exp Cell Res 316:3454–3467

    Article  PubMed  CAS  Google Scholar 

  • Bonekamp NA, Fahimi HD, Schrader M (2012) Oxidative stress in peroxisomes. In: Pantopoulos K, Schipper H (eds) Principles of Free Radical Biomedicine. Nova Science Publishers Inc. (in press)

  • Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808:937–946

    Article  PubMed  CAS  Google Scholar 

  • Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, Nave KA, Kassmann C, Baes M (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 58:1532–1543

    PubMed  Google Scholar 

  • Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM (2010) Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol 20:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132:482–492

    Article  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4

    Article  PubMed  CAS  Google Scholar 

  • Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    Article  PubMed  CAS  Google Scholar 

  • Camoes F, Bonekamp NA, Delille HK, Schrader M (2009) Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria. J Inherit Metab Dis 32:163–180

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Costa-Rodrigues J, Correia I, Costa Pessoa J, Faria TQ, Martins CL, Fransen M, Sa-Miranda C, Azevedo JE (2006) The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J Mol Biol 356:864–875

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272

    Article  PubMed  CAS  Google Scholar 

  • Cepinska MN, Veenhuis M, van der Klei IJ, Nagotu S (2011) Peroxisome fission is associated with reorganization of specific membrane proteins. Traffic 12:925–937

    Article  PubMed  CAS  Google Scholar 

  • Chang CR, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503

    Article  PubMed  CAS  Google Scholar 

  • Chao C, Youssef J, Rezaiekhaleigh M, Birnbaum LS, Badr M (2002) Senescence-associated decline in hepatic peroxisomal enzyme activities corresponds with diminished levels of retinoid X receptor alpha, but not peroxisome proliferator-activated receptor alpha. Mech Ageing Dev 123:1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Chigri F, Flosdorff S, Pilz S, Kolle E, Dolze E, Gietl C, Vothknecht UC (2012) The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. Plant Mol Biol 78:211–222

    Article  PubMed  CAS  Google Scholar 

  • Chu S, Huang Q, Alvares K, Yeldandi AV, Rao MS, Reddy JK (1995) Transformation of mammalian cells by overexpressing H2O2-generating peroxisomal fatty acyl-CoA oxidase. Proc Natl Acad Sci USA 92:7080–7084

    Article  PubMed  CAS  Google Scholar 

  • Cimini A, Benedetti E, D’Angelo B, Cristiano L, Falone S, Di Loreto S, Amicarelli F, Ceru MP (2009a) Neuronal response of peroxisomal and peroxisome-related proteins to chronic and acute Abeta injury. Curr Alzheimer Res 6:238–251

    Article  PubMed  CAS  Google Scholar 

  • Cimini A, Moreno S, D’Amelio M, Cristiano L, D’Angelo B, Falone S, Benedetti E, Carrara P, Fanelli F, Cecconi F, Amicarelli F, Ceru MP (2009b) Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer’s disease: a role for peroxisomes. J Alzheimers Dis 18:935–952

    PubMed  CAS  Google Scholar 

  • Clastre M, Papon N, Courdavault V, Giglioli-Guivarc’h N, St-Pierre B, Simkin AJ (2011) Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. Plant Signal Behav (Epub ahead of print)

  • Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244:3514–3520

    PubMed  CAS  Google Scholar 

  • Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca(2+)-dependent scavenging system. Plant J 62:760–772

    Article  PubMed  CAS  Google Scholar 

  • Dastig S, Nenicu A, Otte DM, Zimmer A, Seitz J, Baumgart-Vogt E, Luers GH (2011) Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 136:413–425

    Article  PubMed  CAS  Google Scholar 

  • Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286:28223–28234

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • Delille HK, Alves R, Schrader M (2009) Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 131:441–446

    Article  PubMed  CAS  Google Scholar 

  • Delille HK, Agricola B, Guimaraes SC, Borta H, Luers GH, Fransen M, Schrader M (2010) Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    Article  PubMed  CAS  Google Scholar 

  • Delille HK, Dodt G, Schrader M (2011) Pex11pbeta-mediated maturation of peroxisomes. Commun Integr Biol 4:51–54

    PubMed  Google Scholar 

  • Desai M, Hu J (2008) Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b. Plant Physiol 146:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Di Benedetto R, Denti MA, Salvati S, Sanchez M, Attorri L, David G, Di Biase A (2008) RNAi-mediated silencing of ABCD3 gene expression in rat C6 glial cells: a model system to study PMP70 function. Neurochem Int 52:1106–1113

    Article  PubMed  CAS  Google Scholar 

  • Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681

    Article  PubMed  CAS  Google Scholar 

  • Drago I, Giacomello M, Pizzo P, Pozzan T (2008) Calcium dynamics in the peroxisomal lumen of living cells. J Biol Chem 283:14384–14390

    Article  PubMed  CAS  Google Scholar 

  • Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77:67–76

    Article  PubMed  CAS  Google Scholar 

  • Elsner M, Gehrmann W, Lenzen S (2011) Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60:200–208

    Article  PubMed  CAS  Google Scholar 

  • Erdmann R, Schliebs W (2005) Opinion: Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6:738–742

    Article  PubMed  CAS  Google Scholar 

  • Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008) D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28:10404–10414

    Article  PubMed  CAS  Google Scholar 

  • Errico F, Napolitano F, Nistico R, Centonze D, Usiello A (2009) D-aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20:429–440

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed  CAS  Google Scholar 

  • Farre JC, Manjithaya R, Mathewson RD, Subramani S (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  PubMed  CAS  Google Scholar 

  • Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona R, Portero-Otin M, Pujol A (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    Article  PubMed  CAS  Google Scholar 

  • Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM, Mooyer PA, Pampols T, Dacremont G, Wanders RJ, Giros M, Pujol A (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296:E211–E221

    Article  PubMed  CAS  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2011) Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta (Epub ahead of print)

  • Fuchs SA, Peeters-Scholte CM, de Barse MM, Roeleveld MW, Klomp LW, Berger R, de Koning TJ (2011) Increased concentrations of both NMDA receptor co-agonists D-serine and glycine in global ischemia: a potential novel treatment target for perinatal asphyxia. Amino Acids (Epub ahead of print)

  • Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M (2006) Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta 1763:1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30

    Article  PubMed  CAS  Google Scholar 

  • Galino J, Ruiz M, Fourcade S, Schluter A, Lopez-Erauskin J, Guilera C, Jove M, Naudi A, Garcia-Arumi E, Andreu AL, Starkov AA, Pamplona R, Ferrer I, Portero-Otin M, Pujol A (2011) Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. Antioxid Redox Signal 15:2095–2107

    Article  PubMed  CAS  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann W, Elsner M (2011) A specific fluorescence probe for hydrogen peroxide detection in peroxisomes. Free Radic Res 45:501–506

    Article  PubMed  CAS  Google Scholar 

  • Genin EC, Geillon F, Gondcaille C, Athias A, Gambert P, Trompier D, Savary S (2011) Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). J Biol Chem 286:8075–8084

    Article  PubMed  CAS  Google Scholar 

  • Girzalsky W, Platta HW, Erdmann R (2009) Protein transport across the peroxisomal membrane. Biol Chem 390:745–751

    Article  PubMed  CAS  Google Scholar 

  • Gomes LC, Benedetto GD, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Peters JM, Cattley RC (1998) Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor alpha. J Natl Cancer Inst 90:1702–1709

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez NH, Felsner G, Schramm FD, Klingl A, Maier UG, Bolte K (2011) A single peroxisomal targeting signal mediates matrix protein import in diatoms. PLoS ONE 6:e25316

    Article  PubMed  CAS  Google Scholar 

  • Goth L, Vitai M, Rass P, Sukei E, Pay A (2005) Detection of a novel familial catalase mutation (Hungarian type D) and the possible risk of inherited catalase deficiency for diabetes mellitus. Electrophoresis 26:1646–1649

    Article  PubMed  CAS  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Alencastre IS, Rodrigues TA, Freitas MO, Francisco T, Sa-Miranda C, Azevedo JE (2009a) The peroxisomal protein import machinery—a case report of transient ubiquitination with a new flavor. Cell Mol Life Sci 66:254–262

    Article  PubMed  CAS  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sa-Miranda C, Fransen M, Azevedo JE (2009b) Properties of the ubiquitin–pex5p thiol ester conjugate. J Biol Chem 284:10504–10513

    Article  PubMed  CAS  Google Scholar 

  • Grunau S, Mindthoff S, Rottensteiner H, Sormunen RT, Hiltunen JK, Erdmann R, Antonenkov VD (2009a) Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae. FEBS J 276:1698–1708

    Article  PubMed  CAS  Google Scholar 

  • Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2009b) Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 10:451–460

    Article  PubMed  CAS  Google Scholar 

  • Grzmil P, Burfeind C, Preuss T, Dixkens C, Wolf S, Engel W, Burfeind P (2007) The putative peroxisomal gene Pxt1 is exclusively expressed in the testis. Cytogenet Genome Res 119:74–82

    Article  PubMed  CAS  Google Scholar 

  • Guardiola-Diaz HM, Rehnmark S, Usuda N, Albrektsen T, Feltkamp D, Gustafsson JA, Alexson SE (1999) Rat peroxisome proliferator-activated receptors and brown adipose tissue function during cold acclimatization. J Biol Chem 274:23368–23377

    Article  PubMed  CAS  Google Scholar 

  • Halbach A, Lorenzen S, Landgraf C, Volkmer-Engert R, Erdmann R, Rottensteiner H (2005) Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. JBiolChem 280:21176–21182

    CAS  Google Scholar 

  • Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R, Erdmann R, Rottensteiner H (2006) Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 119:2508–2517

    Article  PubMed  CAS  Google Scholar 

  • Halbach A, Rucktäschel R, Rottensteiner H, Erdmann R (2009) The N-domain of Pex22p can functionally replace the Pex3p N-domain in targeting and peroxisome formation. J Biol Chem 284:3906–3916

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Washida N, Tokuyama H, Hayashi K, Itoh H (2008) Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun 372:51–56

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Sueyasu K, Washida N, Tokuyama H, Tzukerman M, Skorecki K, Hayashi K, Itoh H (2010) Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285:13045–13056

    Article  PubMed  CAS  Google Scholar 

  • Hess R, Staubli W, Riess W (1965) Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208:856–858

    Article  PubMed  CAS  Google Scholar 

  • Hettema EH, Motley AM (2009) How peroxisomes multiply. J Cell Sci 122:2331–2336

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155:979–990

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner D, Schildknegt D, Braakman I, Philippsen P, Tabak HF (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122:85–95

    Article  PubMed  CAS  Google Scholar 

  • Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ, Waterham HR (2004a) Human mevalonate pyrophosphate decarboxylase is localized in the cytosol. Mol Genet Metab 81:216–224

    Article  PubMed  CAS  Google Scholar 

  • Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ, Waterham HR (2004b) Mevalonate kinase is a cytosolic enzyme in humans. J Cell Sci 117:631–639

    Article  PubMed  CAS  Google Scholar 

  • Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ, Waterham HR (2004c) Phosphomevalonate kinase is a cytosolic protein in humans. J Lipid Res 45:697–705

    Article  PubMed  CAS  Google Scholar 

  • Honsho M, Fujiki Y (2001) Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening-loop sequence and flanking hydrophobic segments. Study using human membrane protein PMP34. J Biol Chem 276:9375–9382

    Article  PubMed  CAS  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA 108:14590–14595

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Desai M (2008) Light control of peroxisome proliferation during Arabidopsis photomorphogenesis. Plant Signal Behav 3:801–803

    Article  PubMed  Google Scholar 

  • Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP, De Deyn PP, D’Hooge R, Hartmann D, Baes M (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28:4015–4027

    Article  PubMed  CAS  Google Scholar 

  • Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H (2012) Catalase Deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes (Epub ahead of print)

  • Hynes MJ, Murray SL, Duncan A, Khew GS, Davis MA (2006) Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 5:794–805

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Murray SL, Khew GS, Davis MA (2008) Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:1355–1369

    Article  PubMed  CAS  Google Scholar 

  • Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T (2010) Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot Cell 9:682–694

    Article  PubMed  CAS  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Li KW, Seitz J, Volkl A, Luers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes–evidence for a natural piggyback import mechanism in mammals. Traffic 10:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Cardoso MJ, Schrader M (2010) Be different—the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta 1803:881–897

    Article  PubMed  CAS  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  • Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Jansen S, Cashman K, Thompson JG, Pantaleon M, Kaye PL (2009) Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. Reproduction 138:493–505

    Article  PubMed  CAS  Google Scholar 

  • Jones JM, Morrell JC, Gould SJ (2001) Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol 153:1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Jones JM, Morrell JC, Gould SJ (2004) PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 164:57–67

    Article  PubMed  CAS  Google Scholar 

  • Joo HJ, Yim YH, Jeong PY, Jin YX, Lee JE, Kim H, Jeong SK, Chitwood DJ, Paik YK (2009) Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J 422:61–71

    Article  PubMed  CAS  Google Scholar 

  • Joo HJ, Kim KY, Yim YH, Jin YX, Kim H, Kim MY, Paik YK (2010) Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J Biol Chem 285:29319–29325

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Agrawal G, Subramani S (2012) Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division. Mol Biol Cell (Epub ahead of print)

  • Jourdain I, Sontam D, Johnson C, Dillies C, Hyams JS (2008) Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast. Traffic 9:353–365

    Google Scholar 

  • Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285:6739–6749

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek K, Niedzialkowska E, Studencka M, Schulz Y, Grzmil P (2009) Ccdc33, a predominantly testis-expressed gene, encodes a putative peroxisomal protein. Cytogenet Genome Res 126:243–252

    Article  PubMed  CAS  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Kanzawa N, Maeda Y, Ogiso H, Murakami Y, Taguchi R, Kinoshita T (2009) Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci USA 106:17711–17716

    Article  PubMed  CAS  Google Scholar 

  • Kanzawa N, Shimozawa N, Wanders RJ, Ikeda K, Murakami Y, Waterham HR, Mukai S, Fujita M, Maeda Y, Taguchi R, Fujiki Y, Kinoshita T (2012) Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome and rhizomelic chondrodysplasia punctata. J Lipid Res (Epub ahead of print)

  • Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  PubMed  CAS  Google Scholar 

  • Karpichev IV, Luo Y, Marians RC, Small GM (1997) A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol Cell Biol 17:69–80

    PubMed  CAS  Google Scholar 

  • Kasai H, Okada Y, Nishimura S, Rao MS, Reddy JK (1989) Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res 49:2603–2605

    PubMed  CAS  Google Scholar 

  • Kashiwayama Y, Seki M, Yasui A, Murasaki Y, Morita M, Yamashita Y, Sakaguchi M, Tanaka Y, Imanaka T (2009) 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 315:190–205

    Article  PubMed  CAS  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    Article  PubMed  CAS  Google Scholar 

  • Kassmann CM, Quintes S, Rietdorf J, Mobius W, Sereda MW, Nientiedt T, Saher G, Baes M, Nave KA (2011) A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Lett 585:2205–2211

    Article  PubMed  CAS  Google Scholar 

  • Kavitha K, Venkataraman G, Parida A (2008) An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization. Plant Physiol Biochem 46:794–804

    Article  PubMed  CAS  Google Scholar 

  • Kemp S, Wei HM, Lu JF, Braiterman LT, McGuinness MC, Moser AB, Watkins PA, Smith KD (1998) Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med 4:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Kemp S, Theodoulou FL, Wanders RJ (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 164:1753–1766

    Article  PubMed  Google Scholar 

  • Kiel JA, Emmrich K, Meyer HE, Kunau WH (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280:1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59:403–419

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428

    Article  PubMed  CAS  Google Scholar 

  • Kim PK, Mullen RT, Schumann U, Lippincott-Schwartz J (2006) The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173:521–532

    Article  PubMed  CAS  Google Scholar 

  • Kirov G, O’Donovan MC, Owen MJ (2005) Finding schizophrenia genes. J Clin Invest 115:1440–1448

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005a) Autophagy. Curr Biol 15:R282–R283

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005b) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  • Knoblach B, Rachubinski RA (2010) Phosphorylation-dependent activation of peroxisome proliferator protein PEX11 controls peroxisome abundance. J Biol Chem 285:6670–6680

    Article  PubMed  CAS  Google Scholar 

  • Koch J, Brocard C (2011) Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. BioMol Concepts 2:353–364

    Article  PubMed  Google Scholar 

  • Koch A, Schneider G, Luers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    Article  PubMed  CAS  Google Scholar 

  • Koepke JI, Wood CS, Terlecky LJ, Walton PA, Terlecky SR (2008) Progeric effects of catalase inactivation in human cells. Toxicol Appl Pharmacol 232:99–108

    Article  PubMed  CAS  Google Scholar 

  • Kou J, Kovacs GG, Hoftberger R, Kulik W, Brodde A, Forss-Petter S, Honigschnabl S, Gleiss A, Brugger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122:271–283

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Olivier LM, Krisans SK (2002) Central role of peroxisomes in isoprenoid biosynthesis. Prog Lipid Res 41:369–391

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Shackelford JE, Tape KN, Richards MJ, Faust PL, Fliesler SJ, Krisans SK (2004) Disturbed cholesterol homeostasis in a peroxisome-deficient PEX2 knockout mouse model. Mol Cell Biol 24:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, Brunengraber H, Krisans SK (2007) Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 127:273–290

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Tape KN, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL (2009) Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem 284:7232–7245

    Article  PubMed  CAS  Google Scholar 

  • Kragt A, Voorn-Brouwer T, van den Berg M, Distel B (2005) Endoplasmic reticulum-directed Pex3p Routes to peroxisomes and restores peroxisome formation in a Saccharomyces cerevisiae pex3Delta strain. J Biol Chem 280:34350–34357

    Article  PubMed  CAS  Google Scholar 

  • Krysko O, Bottelbergs A, Van Veldhoven P, Baes M (2010) Combined deficiency of peroxisomal beta-oxidation and ether lipid synthesis in mice causes only minor cortical neuronal migration defects but severe hypotonia. Mol Genet Metab 100:71–76

    Article  PubMed  CAS  Google Scholar 

  • Kunau WH (2005) Peroxisome biogenesis: end of the debate. Curr Biol 15:R774–R776

    Article  PubMed  CAS  Google Scholar 

  • Kuravi K, Nagotu S, Krikken AM, Sjollema K, Deckers M, Erdmann R, Veenhuis M, van der Klei IJ (2006) Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J Cell Sci 119:3994–4001

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Yoda N, Schekman R (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci USA 107:21523–21528

    Article  PubMed  CAS  Google Scholar 

  • Lanyon-Hogg T, Warriner SL, Baker A (2010) Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 102:245–263

    Article  PubMed  CAS  Google Scholar 

  • Lasorsa FM, Pinton P, Palmieri L, Scarcia P, Rottensteiner H, Rizzuto R, Palmieri F (2008) Peroxisomes as novel players in cell calcium homeostasis. J Biol Chem 283:15300–15308

    Article  PubMed  CAS  Google Scholar 

  • Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Dev Cell 22:320–333

    Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73:2043–2046

    Article  PubMed  CAS  Google Scholar 

  • Leao AN, Kiel JA (2003) Peroxisome homeostasis in Hansenula polymorpha. FEMS Yeast Res 4:131–139

    Article  PubMed  CAS  Google Scholar 

  • Li WW, Li J, Bao JK (2011) Microautophagy: lesser-known self-eating. Cell Mol Life Sci (Epub ahead of print)

  • Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber AP (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Lu JP, Lin FC (2007) Autophagy during conidiation, conidial germination and turgor generation in Magnaporthe grisea. Autophagy 3:472–473

    PubMed  CAS  Google Scholar 

  • Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis (Epub ahead of print)

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  CAS  Google Scholar 

  • Luiken JJ, van den Berg M, Heikoop JC, Meijer AJ (1992) Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 304:93–97

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Reumann S (2008) Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. J Exp Bot 59:3767–3779

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Subramani S (2009) Peroxisome matrix and membrane protein biogenesis. IUBMB Life 61:713–722

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Schumann U, Rayapuram N, Subramani S (2009) The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 20:3680–3689

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193:7–16

    Article  PubMed  CAS  Google Scholar 

  • Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6:e14564

    Article  PubMed  CAS  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Meyer HE, Niehaus G, Erdmann R, Warscheid B, Rottensteiner H (2010) A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa. Proteomics 10:3222–3234

    Article  PubMed  CAS  Google Scholar 

  • Marshall PA, Dyer JM, Quick ME, Goodman JM (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J Cell Biol 135:123–137

    Article  PubMed  CAS  Google Scholar 

  • Matre P, Meyer C, Lillo C (2009) Diversity in subcellular targeting of the PP2A B′eta subfamily members. Planta 230:935–945

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Fujiki Y (2008) The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183:1275–1286

    Article  PubMed  CAS  Google Scholar 

  • Maynard EL, Gatto GJ Jr, Berg JM (2004) Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins 55:856–861

    Article  PubMed  CAS  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709

    Article  PubMed  CAS  Google Scholar 

  • Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12:273–277

    PubMed  CAS  Google Scholar 

  • Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T (2009) OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett 583:3625–3629

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, El-Shami M, Sparkes IA, Charlton WL, Lousa Cde M, Johnson B, Baker A (2010) Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS ONE 5:e9408

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Kuwahara J, Ozaki K, Saeki E, Fujiwara T, Takabe T (2011) Isolation and characterization of a novel peroxisomal choline monooxygenase in barley. Planta 234:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  • Moldovan L, Moldovan NI (2004) Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 122:395–412 (Epub 2004 Sep 2025)

    Google Scholar 

  • Morre DJ, Sellden G, Ojanpera K, Sandelius AS, Egger A, Morre DM, Chalko CM, Chalco RA (1990) Peroxisome proliferation in Norway spruce induced by ozone. Protoplasma 155:58–65

    Article  CAS  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Moser HW (1999) Peroxisomal disorders. Molecular defects, genotype–phenotype correlations and therapy. J Med Liban 47:18–21

    PubMed  CAS  Google Scholar 

  • Motley AM, Hettema EH (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178:399–410

    Article  PubMed  CAS  Google Scholar 

  • Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1:40–46

    Article  PubMed  CAS  Google Scholar 

  • Motley AM, Ward GP, Hettema EH (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121:1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y (2002) Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7:75–90

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Reichert AS (2011) Mitophagy, mitochondrial dynamics and the general stress response in yeast. Biochem Soc Trans 39:1514–1519

    PubMed  Google Scholar 

  • Muller WH, van der Krift TP, Krouwer AJ, Wosten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495

    PubMed  CAS  Google Scholar 

  • Muller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116:210–213

    Article  PubMed  CAS  Google Scholar 

  • Nagotu S, Saraya R, Otzen M, Veenhuis M, van der Klei IJ (2008) Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation. Biochim Biophys Acta 1783:760–769

    Article  PubMed  CAS  Google Scholar 

  • Nagotu S, Veenhuis M, van der Klei IJ (2010) Divide et impera: the dictum of peroxisomes. Traffic 11:175–184

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  CAS  Google Scholar 

  • Nazarko TY, Farre JC, Polupanov AS, Sibirny AA, Subramani S (2007a) Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy 3:263–265

    PubMed  CAS  Google Scholar 

  • Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA (2007b) The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 18:106–118

    Article  PubMed  CAS  Google Scholar 

  • Netik A, Forss-Petter S, Holzinger A, Molzer B, Unterrainer G, Berger J (1999) Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum Mol Genet 8:907–913

    Article  PubMed  CAS  Google Scholar 

  • Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, McBride HM (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    Article  PubMed  CAS  Google Scholar 

  • Nguyen SD, Baes M, Van Veldhoven PP (2008) Degradation of very long chain dicarboxylic polyunsaturated fatty acids in mouse hepatocytes, a peroxisomal process. Biochim Biophys Acta 1781:400–405

    PubMed  CAS  Google Scholar 

  • Nishikawa M, Hagishita T, Yurimoto H, Kato N, Sakai Y, Hatanaka T (2000) Primary structure and expression of peroxisomal acetylspermidine oxidase in the methylotrophic yeast Candida boidinii. FEBS Lett 476:150–154

    Article  PubMed  CAS  Google Scholar 

  • Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23:421–426

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  CAS  Google Scholar 

  • Oku M, Sakai Y (2010) Peroxisomes as dynamic organelles: autophagic degradation. FEBS J 277:3289–3294

    Article  PubMed  CAS  Google Scholar 

  • Oku M, Warnecke D, Noda T, Muller F, Heinz E, Mukaiyama H, Kato N, Sakai Y (2003) Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J 22:3231–3241

    Article  PubMed  CAS  Google Scholar 

  • Olsen LJ, Harada JJ (1995) Peroxisomes and their assembly in higher plants. Annu Rev Plant Physiol 46:123–146

    Article  CAS  Google Scholar 

  • Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T, Takahashi Y (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42:867–876

    Article  PubMed  CAS  Google Scholar 

  • Opalinski L, Kiel JA, Williams C, Veenhuis M, van der Klei IJ (2011) Membrane curvature during peroxisome fission requires Pex11. EMBO J 30:5–16

    Article  PubMed  CAS  Google Scholar 

  • Ostadsharif M, Ghaedi K, Hossein Nasr-Esfahani M, Mojbafan M, Tanhaie S, Karbalaie K, Baharvand H (2011) The expression of peroxisomal protein transcripts increased by retinoic acid during neural differentiation. Differentiation 81:127–132

    Article  PubMed  CAS  Google Scholar 

  • Otera H, Mihara K (2011) Discovery of the membrane receptor for mitochondrial fission GTPase Drp1. Small Gtpases 2:167–172

    Article  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059

    Article  PubMed  CAS  Google Scholar 

  • Peeters A, Fraisl P, van den Berg S, van Ver Loren Themaat E, Van Kampen A, Rider MH, Takemori H, van Dijk KW, Van Veldhoven PP, Carmeliet P, Baes M (2011) Carbohydrate metabolism is perturbed in peroxisome-deficient hepatocytes due to mitochondrial dysfunction, AMP-activated protein kinase (AMPK) activation, and peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) suppression. J Biol Chem 286:42162–42179

    Article  PubMed  CAS  Google Scholar 

  • Perichon R, Bourre JM, Kelly JF, Roth GS (1998) The role of peroxisomes in aging. Cell Mol Life Sci 54:641–652

    Article  PubMed  CAS  Google Scholar 

  • Perry RJ, Mast FD, Rachubinski RA (2009) Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryot Cell 8:830–843

    Article  PubMed  CAS  Google Scholar 

  • Petriv OI, Rachubinski RA (2004) Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem 279:19996–20001 (Epub 12004 Mar 19992)

    Google Scholar 

  • Phelps C, Gburcik V, Suslova E, Dudek P, Forafonov F, Bot N, MacLean M, Fagan RJ, Picard D (2006) Fungi and animals may share a common ancestor to nuclear receptors. Proc Natl Acad Sci USA 103:7077–7081

    Article  PubMed  CAS  Google Scholar 

  • Platta HW, Girzalsky W, Erdmann R (2004) Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 384:37–45

    Article  PubMed  CAS  Google Scholar 

  • Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29:5505–5516

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-oxidation—a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426

    Article  PubMed  CAS  Google Scholar 

  • Pollack JK, Harris SD, Marten MR (2009) Autophagy in filamentous fungi. Fungal Genet Biol 46:1–8

    Article  PubMed  CAS  Google Scholar 

  • Poopanitpan N, Kobayashi S, Fukuda R, Horiuchi H, Ohta A (2010) An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica. Biochem Biophys Res Commun 402:731–735

    Article  PubMed  CAS  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  PubMed  CAS  Google Scholar 

  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338

    Article  PubMed  CAS  Google Scholar 

  • Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A (2010) Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 285:24078–24088

    Article  PubMed  CAS  Google Scholar 

  • Pyper SR, Viswakarma N, Yu S, Reddy JK (2010) PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 8:e002

    Article  PubMed  CAS  Google Scholar 

  • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108:10190–10195

    Article  PubMed  CAS  Google Scholar 

  • Ramirez MA, Lorenz MC (2009) The transcription factor homolog CTF1 regulates {beta}-oxidation in Candida albicans. Eukaryot Cell 8:1604–1614

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumar S, Young ET (2010) Snf1 dependence of peroxisomal gene expression is mediated by Adr1. J Biol Chem 285:10703–10714

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhury B, Gupta S, Banerjee S, Datta SC (2006) Peroxisome is a reservoir of intracellular calcium. Biochim Biophys Acta 1760:989–992

    Article  PubMed  CAS  Google Scholar 

  • Reiser K, Davis MA, Hynes MJ (2010a) AoxA is a major peroxisomal long chain fatty acyl-CoA oxidase required for beta-oxidation in A. nidulans. Curr Genet 56:139–150

    Article  PubMed  CAS  Google Scholar 

  • Reiser K, Davis MA, Hynes MJ (2010b) Aspergillus nidulans contains six possible fatty acyl-CoA synthetases with FaaB being the major synthetase for fatty acid degradation. Arch Microbiol 192:373–382

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Bettermann M, Benz R, Heldt HW (1997) Evidence for the Presence of a Porin in the Membrane of Glyoxysomes of Castor Bean. Plant Physiol 115:891–899

    PubMed  CAS  Google Scholar 

  • Reumann S, Maier E, Heldt HW, Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251:359–366

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Rio LA, Sandalio LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 47:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirila PL, Bergmann U, Sormunen RT, Weckstrom M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane. PLoS ONE 4:e5090

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156:185–201

    Article  PubMed  CAS  Google Scholar 

  • Rottensteiner H, Kal AJ, Hamilton B, Ruis H, Tabak HF (1997) A heterodimer of the Zn2Cys6 transcription factors Pip2p and Oaf1p controls induction of genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Eur J Biochem 247:776–783

    Article  PubMed  CAS  Google Scholar 

  • Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, Erdmann R (2004) Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals (mPTS). Mol Biol Cell 15:3406–3417

    Article  PubMed  CAS  Google Scholar 

  • Rucktäschel R, Thoms S, Sidorovitch V, Halbach A, Pechlivanis M, Volkmer R, Alexandrov K, Kuhlmann J, Rottensteiner H, Erdmann R (2009) Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J Biol Chem 284:20885–20896

    Article  PubMed  CAS  Google Scholar 

  • Rucktäschel R, Halbach A, Girzalsky W, Rottensteiner H, Erdmann R (2010) De novo synthesis of peroxisomes upon mitochondrial targeting of Pex3p. Eur J Cell Biol 89:947–954

    Article  PubMed  CAS  Google Scholar 

  • Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Article  PubMed  CAS  Google Scholar 

  • Saikia S, Scott B (2009) Functional analysis and subcellular localization of two geranylgeranyl diphosphate synthases from Penicillium paxilli. Mol Genet Genomics 282:257–271

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Oku M, van der Klei IJ, Kiel JA (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Saleem RA, Knoblach B, Mast FD, Smith JJ, Boyle J, Dobson CM, Long-O’Donnell R, Rachubinski RA, Aitchison JD (2008) Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis. J Cell Biol 181:281–292

    Article  PubMed  CAS  Google Scholar 

  • Saleem RA, Rogers RS, Ratushny AV, Dilworth DJ, Shannon PT, Shteynberg D, Wan Y, Moritz RL, Nesvizhskii AI, Rachubinski RA, Aitchison JD (2010) Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction. Mol Cell Proteomics 9:2076–2088

    Article  PubMed  CAS  Google Scholar 

  • Salomons FA, van der Klei IJ, Kram AM, Harder W, Veenhuis M (1997) Brefeldin A interferes with peroxisomal protein sorting in the yeast Hansenula polymorpha. FEBS Lett 411:133–139

    Article  PubMed  CAS  Google Scholar 

  • Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Saraya R, Krikken AM, Veenhuis M, van der Klei IJ (2011) Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1. J Cell Biol 193:885–900

    Article  PubMed  CAS  Google Scholar 

  • Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci USA 109:627–632

    Article  PubMed  CAS  Google Scholar 

  • Sasano Y, Yurimoto H, Yanaka M, Sakai Y (2008) Trm1p, a Zn(II)2Cys6-type transcription factor, is a master regulator of methanol-specific gene activation in the methylotrophic yeast Candida boidinii. Eukaryot Cell 7:527–536

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible HP (2005) A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280:13962–13972

    Article  PubMed  CAS  Google Scholar 

  • Schrader M (2006) Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta 1763:531–541

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006a) Growth and division of peroxisomes. Int Rev Cytol 255:237–290

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006b) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2008) The peroxisome: still a mysterious organelle. Histochem Cell Biol 129:421–440

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Yoon Y (2007) Mitochondria and peroxisomes: are the ‘big brother’ and the ‘little sister’ closer than assumed? BioEssays 29:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Burkhardt JK, Baumgart E, Luers G, Volkl A, Fahimi HD (1996) The importance of microtubules in determination of shape and intracellular distribution of peroxisomes. Ann N Y Acad Sci 804:669–671

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Krieglstein K, Fahimi HD (1998a) Tubular peroxisomes in HepG2 cells: selective induction by growth factors and arachidonic acid. Eur J Cell Biol 75:87–96

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998b) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, King SJ, Stroh TA, Schroer TA (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671

    PubMed  CAS  Google Scholar 

  • Schrader M, Bonekamp NA, Islinger M (2011) Fission and proliferation of peroxisomes. Biochim Biophys Acta (Epub ahead of print)

  • Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645

    Article  PubMed  CAS  Google Scholar 

  • Schüller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160 (Epub 2003 Apr 2025)

    Google Scholar 

  • Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Binder M, Adam G, Hartig A, Ruis H (1992) Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8:303–309

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Kim PM (2000) d-Amino acids as putative neurotransmitters: focus on d-serine. Neurochem Res 25:553–560

    Article  PubMed  CAS  Google Scholar 

  • Sontag E (2001) Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal 13:7–16

    Article  PubMed  CAS  Google Scholar 

  • Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P, Fon EA, McBride HM (2012) A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22:135–141

    Article  PubMed  CAS  Google Scholar 

  • Soukupova M, Sprenger C, Gorgas K, Kunau WH, Dodt G (1999) Identification and characterization of the human peroxin PEX3. Eur J Cell Biol 78:357–374

    Article  PubMed  CAS  Google Scholar 

  • South ST, Baumgart E, Gould SJ (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Natl Acad Sci USA 98:12027–12031

    Article  PubMed  CAS  Google Scholar 

  • Spiegel CN, Batista-Pereira LG, Bretas JA, Eiras AE, Hooper AM, Peixoto AA, Soares MJ (2011) Pheromone gland development and pheromone production in lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). J Med Entomol 48:489–495

    Article  PubMed  CAS  Google Scholar 

  • Spröte P, Brakhage AA, Hynes MJ (2009) Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 8:421–423

    Article  PubMed  CAS  Google Scholar 

  • Stasyk OV, Nazarko TY, Stasyk OG, Krasovska OS, Warnecke D, Nicaud JM, Cregg JM, Sibirny AA (2003) Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol Int 27:947–952

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748

    Article  PubMed  CAS  Google Scholar 

  • Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2:524–531

    Article  PubMed  CAS  Google Scholar 

  • Sudbery PE, Gleeson MA, Veale RA, Ledeboer AM, Zoetmulder MC (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem Soc Trans 16:1081–1083

    PubMed  CAS  Google Scholar 

  • Tam YY, Fagarasanu A, Fagarasanu M, Rachubinski RA (2005) Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 280:34933–34939

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Maruyama J, Yamaoka S, Yahagi D, Matsuo I, Tsutsumi N, Kitamoto K (2011) Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis. J Biol Chem 286:30455–30461

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  PubMed  CAS  Google Scholar 

  • Tanida I (2011a) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201–2214

    Article  PubMed  CAS  Google Scholar 

  • Tanida I (2011b) Autophagy basics. Microbiol Immunol 55:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  PubMed  CAS  Google Scholar 

  • Terlecky SR, Koepke JI, Walton PA (2006) Peroxisomes and aging. Biochim Biophys Acta 1763:1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Thabet I, Guirimand G, Courdavault V, Papon N, Godet S, Dutilleul C, Bouzid S, Giglioli-Guivarc’h N, Clastre M, Simkin AJ (2011) The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. J Plant Physiol 168:2110–2116

    Article  PubMed  CAS  Google Scholar 

  • Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272:5169–5181

    Article  PubMed  CAS  Google Scholar 

  • Thoms S, Debelyy MO, Nau K, Meyer HE, Erdmann R (2008) Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J 275:504–514

    Article  PubMed  CAS  Google Scholar 

  • Thoms S, Harms I, Kalies KU, Gartner J (2011) Peroxisome formation requires the endoplasmic reticulum channel protein Sec61. Traffic (Epub ahead of print)

  • Titorenko VI, Rachubinski RA (1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18:2789–2803

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12:252–259

    Article  PubMed  CAS  Google Scholar 

  • Toutzaris D, Lewerenz J, Albrecht P, Jensen LT, Letz J, Geerts A, Golz S, Methner A (2010) A novel giant peroxisomal superoxide dismutase motif-containing protein. Free Radic Biol Med 48:811–820

    Article  PubMed  CAS  Google Scholar 

  • Trzcinska-Danielewicz J, Ishikawa T, Micialkiewicz A, Fronk J (2008) Yeast transcription factor Oaf1 forms homodimer and induces some oleate-responsive genes in absence of Pip2. Biochem Biophys Res Commun 374:763–766

    Article  PubMed  CAS  Google Scholar 

  • Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108(Pt 1):25–35

    PubMed  CAS  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Yamanoi K, Morikawa T, Okada H, Tanaka A (1985) Peroxisomal localization of enzymes related to fatty acid beta-oxidation in an n-alkane-grown yeast, Candida tropicalis. Agric Biol Chem 49:1821–1828

    Article  CAS  Google Scholar 

  • Van de Bittner GC, Dubikovskaya EA, Bertozzi CR, Chang CJ (2010) In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci USA 107:21316–21321

    Article  PubMed  Google Scholar 

  • van der Zand A, Braakman I, Tabak HF (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21:2057–2065

    Article  PubMed  CAS  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJ (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208

    Article  PubMed  CAS  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811:148–152

    PubMed  Google Scholar 

  • Veneault-Fourrey C, Talbot NJ (2007) Autophagic cell death and its importance for fungal developmental biology and pathogenesis. Autophagy 3:126–127

    PubMed  CAS  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–583

    Article  PubMed  CAS  Google Scholar 

  • Visser WF, van Roermund CW, Waterham HR, Wanders RJ (2002) Identification of human PMP34 as a peroxisomal ATP transporter. Biochem Biophys Res Commun 299:494–497

    Article  PubMed  CAS  Google Scholar 

  • Vizeacoumar FJ, Vreden WN, Eitzen GA, Aitchison JD, Rachubinski RA (2006) The dynamin-like protein Vps1p of the yeast Saccharomyces cerevisiae associates with peroxisomes in a Pex19p-dependent manner. J Biol Chem 281:12817–12823

    Article  PubMed  CAS  Google Scholar 

  • Voorn-Brouwer T, Kragt A, Tabak HF, Distel B (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. J Cell Sci 114:2199–2204

    PubMed  CAS  Google Scholar 

  • Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem J 370:19–28

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJ (2004) Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab 83:16–27

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Unruh MJ, Goodman JM (2001) Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J Biol Chem 276:10897–10905

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  PubMed  CAS  Google Scholar 

  • Weber FE, Minestrini G, Dyer JH, Werder M, Boffelli D, Compassi S, Wehrli E, Thomas RM, Schulthess G, Hauser H (1997) Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily. Proc Natl Acad Sci USA 94:8509–8514

    Article  PubMed  CAS  Google Scholar 

  • Wiebel FF, Kunau WH (1992) The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359:73–76

    Article  PubMed  CAS  Google Scholar 

  • Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543

    Article  PubMed  CAS  Google Scholar 

  • Williams C, van den Berg M, Geers E, Distel B (2008) Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 374:620–624

    Article  PubMed  CAS  Google Scholar 

  • Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M (2012) Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 31:391–402

    Article  CAS  Google Scholar 

  • Wiszniewski AA, Zhou W, Smith SM, Bussell JD (2009) Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Mol Biol 69:503–515

    Article  PubMed  CAS  Google Scholar 

  • Woudenberg J, Rembacz KP, Hoekstra M, Pellicoro A, van den Heuvel FA, Heegsma J, van Ijzendoorn SC, Holzinger A, Imanaka T, Moshage H, Faber KN (2010) Lipid rafts are essential for peroxisome biogenesis in HepG2 cells. Hepatology 52:623–633

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Yankovskaya V, McIntire WS (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J Biol Chem 278:20514–20525

    Article  PubMed  CAS  Google Scholar 

  • Yakunin E, Moser A, Loeb V, Saada A, Faust P, Crane DI, Baes M, Sharon R (2010) alpha-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res 88:866–876

    PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S, Fujiki Y, Sakai Y (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30:3758–3766

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Fahimi HD (2009) Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol 131:455–458

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Haraguchi CM, Oda T (2008) Induction of peroxisomal Lon protease in rat liver after di-(2-ethylhexyl)phthalate treatment. Histochem Cell Biol 129:73–83

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa S, Furuno A, Baba T, Fujiki Y, Ogasawara Y, Yamamoto A, Tagaya M, Tani K (2011) Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc Natl Acad Sci USA 108:12746–12751

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, De Marcos Lousa C, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL (2011) Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression. Biochem J 436:547–557

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156:1323–1337

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the laboratory for stimulating discussions and comments on the manuscript and we apologize to those whose work has not been cited owing to space limitations. This work was supported by the Portuguese Foundation for Science and Technology (FCT) and FEDER (PTDC/SAU-OSM/103647/2008; PTDC/BIA-BCM/099613/2008; SFRH/BPD/74428/2010 to M. I.), CRUP/DAAD (ACÇÕES INTEGRADAS—2010) and the University of Aveiro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islinger, M., Grille, S., Fahimi, H.D. et al. The peroxisome: an update on mysteries. Histochem Cell Biol 137, 547–574 (2012). https://doi.org/10.1007/s00418-012-0941-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0941-4

Keywords

Navigation