Skip to main content
Log in

Myelination in coculture of established neuronal and Schwann cell lines

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Establishing stable coculture systems with neuronal and Schwann cell lines has been considered difficult, presumably because of their high proliferative activity and phenotypic differences from primary cultured cells. The present study is aimed at developing methods for myelin formation under coculture of the neural crest-derived pheochromocytoma cell line PC12 and the immortalized adult rat Schwann cell line IFRS1. Prior to coculture, PC12 cells were seeded at low density (3 × 102/cm2) and maintained in serum-free medium with N2 supplement, ascorbic acid (50 μg/ml), and nerve growth factor (NGF) (50 ng/ml) for a week. Exposure to such a NGF-rich environment with minimum nutrients accelerated differentiation and neurite extension, but not proliferation, of PC12 cells. When IFRS1 cells were added to NGF-primed PC12 cells, the cell density ratio of PC12 cells to IFRS1 cells was adjusted from 1:50 to 1:100. The cocultured cells were then maintained in serum-free medium with B27 supplement, ascorbic acid (50 μg/ml), NGF (10 ng/ml), and recombinant soluble neuregulin-1 type III (25 ng/ml). Myelin formation was illustrated by light and electron microscopy performed at day 28 of coculture. The stable PC12-IFRS1 coculture system is free of technical and ethical problems arising from the primary culture and can be a valuable tool to study peripheral nerve degeneration and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arroyo EJ, Scherer SS (2007) The molecular organization of myelinating Schwann cells. In: Armati P (ed) The biology of Schwann cells. Cambridge UP, New York, pp 37–54

    Chapter  Google Scholar 

  • Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56:1491–1497

    Article  PubMed  Google Scholar 

  • Bolin LM, Iismaa TP, Shooter EM (1992) Isolation of activated adult Schwann cells and a spontaneously immortal Schwann cell clone. J Neurosci Res 33:15–26

    Article  Google Scholar 

  • Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76:514–517

    Article  PubMed  CAS  Google Scholar 

  • Domagala W, Woźniak L, Lasota J, Weber K, Osborn M (1990) Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol 137:1059–1064

    PubMed  CAS  Google Scholar 

  • Einheber S, Hannocks MJ, Metz CN, Rifkin DB, Salzer JL (1995) Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 129:443–458

    Article  PubMed  CAS  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F (2008) In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 56:354–364

    Article  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Hai M, Muja N, DeVries GH, Quarles RH, Patel PI (2002) Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J Neurosci Res 69:497–508

    Article  PubMed  CAS  Google Scholar 

  • Hollis JH, Lightman SL, Lowry CA (2005) Lipopolysaccharide has selective actions on sub-populations of catecholaminergic neurons involved in activation of the hypothalamic-pituitary-adrenal axis and inhibition of prolactin secretion. J Endocrinol 184:393–406

    Article  PubMed  CAS  Google Scholar 

  • Jangouk P, Dehmel T, Meyer Zu, Hörste G, Ludwig A, Lehmann HC, Kieseier BC (2009) Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve. Glia 57:1765–1774

    Article  PubMed  Google Scholar 

  • Jinawath N, Vasoontara C, Jinawath A, Fang X, Zhao K, Yap KL, Guo T, Lee CS, Wang W, Balgley BM, Davidson B, Wang TL, Shih IeM (2010) Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PLoS One 5:e11198

    Article  PubMed  Google Scholar 

  • Katoh-Semba R, Oohira A, Kashiwamata S (1990) Changes in glycosaminoglycans during the neuritogenesis in PC12 pheochromocytoma cells induced by nerve growth factor. J Neurochem 55:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H (2006) Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 26:1235–1252

    Article  PubMed  Google Scholar 

  • Kleitman N, Wood PM, Bunge RP (1998) Tissue culture methods for the study of myelination. In: Banker G, Goslin K (eds) Culturing nerve cells, 2nd edn. MITP, Cambridge, pp 545–594

    Google Scholar 

  • Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD (1999) Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci 19:5393–5408

    PubMed  CAS  Google Scholar 

  • Lehmann HC, Köhne A, Bernal F, Jangouk P, Meyer Zu, Hörste G, Dehmel T, Hartung HP, Previtali SC, Kieseier BC (2009) Matrix metalloproteinase-2 is involved in myelination of dorsal root ganglia neurons. Glia 57:479–489

    Article  PubMed  Google Scholar 

  • Li RH, Sliwkowski MX, Lo J, Mather JP (1996) Establishment of Schwann cell lines from normal adult and embryonic rat dorsal root ganglia. J Neurosci Methods 67:57–69

    Article  PubMed  CAS  Google Scholar 

  • Lobsiger CS, Smith PM, Buchstaller J, Schweitzer B, Franklin RJ, Suter U, Taylor V (2001) Sp201: a conditionally immortalized Schwann cell precursor line that generates myelin. Glia 36:31–47

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R, Jessen KR (2007) Early events in Schwann cell development. In: Armati P (ed) The biology of Schwann cells. Cambridge UP, New York, pp 13–36

    Chapter  Google Scholar 

  • Mizisin AP, Li L, Perello M, Freshwater JD, Kalichman MW, Roux L, Calcutt NA (1996) Polyol pathway and osmoregulation in JS1 Schwann cells grown in hyperglycemic and hyperosmotic conditions. Am J Physiol 270:F90–F97

    PubMed  CAS  Google Scholar 

  • Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24:6724–6732

    Article  PubMed  CAS  Google Scholar 

  • Podratz JL, Rodriguez EH, Windebank AJ (2004) Antioxidants are necessary for myelination of dorsal root ganglion neurons, in vitro. Glia 45:54–58

    Article  PubMed  Google Scholar 

  • Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA (2010) Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst 15:10–16

    Article  PubMed  CAS  Google Scholar 

  • Raimondo S, Nicolino S, Tos P, Battiston B, Giacobini-Robecchi MG, Perroteau I, Geuna S (2005) Schwann cell behavior after nerve repair by means of tissue-engineered muscle-vein combined guides. J Comp Neurol 489:249–259

    Article  PubMed  Google Scholar 

  • Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JT, Wolterman RA, Baas F, ten Asbroek ALMA (2008) Myelination competent conditionally immortalized mouse Schwann cells. J Neurosci Methods 174:25–30

    Article  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Takaku S (2007) Expression and histochemical localization of ciliary neurotrophic factor in cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 128:35–43

    Article  PubMed  CAS  Google Scholar 

  • Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 89:898–908

    Article  PubMed  CAS  Google Scholar 

  • Svendsen CN, Fawcett JW, Bentlage C, Dunnett SB (1995) Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp Brain Res 102:407–414

    Article  PubMed  CAS  Google Scholar 

  • Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30:6122–6131

    Article  PubMed  CAS  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694

    Article  PubMed  CAS  Google Scholar 

  • Thi AD, Evrard C, Rouget P (1998) Proliferation and differentiation properties of permanent Schwann cell lines immortalized with a temperature-sensitive oncogene. J Exp Biol 201:851–860

    PubMed  CAS  Google Scholar 

  • Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, Giacobini-Robecchi MG (2009) Chapter 4: Methods and protocols in peripheral nerve regeneration experimental research: part I-experimental models. Int Rev Neurobiol 87:47–79

    Article  PubMed  Google Scholar 

  • Vent J, Wyatt TA, Smith DD, Banerjee A, Ludueña RF, Sisson JH, Hallworth R (2005) Direct involvement of the isotype-specific C-terminus of beta tubulin in ciliary beating. J Cell Sci 118:4333–4341

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Yamada M, Kawamura T, Kim SU (1990) Transfection and stable transformation of adult mouse Schwann cells with SV-40 large T antigen gene. J Neuropathol Exp Neurol 49:455–467

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res 41:279–290

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Liu L, Li Y, Zhou C, Xiong F, Liu Z, Gu R, Hou X, Zhang C (2008) Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res 1239:49–55

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ma Z, Smith GM, Wen X, Pressman Y, Wood PM, Xu XM (2009) GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia 57:1178–1191

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (Tokyo, Japan) [grant number: 22500324]. We thank Drs. Hitoshi Kawano and Junko Kimura-Kurada for helpful suggestions, Dr. Hitoshi Nagai for providing us the anti-PO antibody, Kentaro Endo for technical help with electron microscopy, and the late Kyoko Ajiki for her enormous contribution to the histochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Sango.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sango, K., Kawakami, E., Yanagisawa, H. et al. Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 137, 829–839 (2012). https://doi.org/10.1007/s00418-012-0934-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0934-3

Keywords

Navigation