Skip to main content

Advertisement

Log in

Suppression of lamin A/C by short hairpin RNAs promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Lamin A/C gene encodes a nuclear membrane protein, and mutations in this gene are associated with diverse degenerative diseases that are linked to premature aging. While lamin A/C is involved in the regulation of tissue homeostasis, the distinct expression patterns are poorly understood in the mesenchymal cells differentiating into adipocytes. Here, we examined the expression of lamin A/C in a rat mesenchymal progenitor cell-line, ROB-C26 (C26). Immunocytochemical analysis showed that lamin A/C was transiently down-regulated in immature adipocytes, but its expression increased with terminal differentiation. To elucidate the role of lamin A/C expression on mesenchymal cell differentiation, lamin A/C expression was suppressed using short hairpin RNA (shRNA) molecules in C26 cells. In the absence of adipogenic stimuli, lamin A/C shRNA decreased alkaline phosphatase (ALP) activity, but induced preadipocyte factor -1 (Pref-1) mRNA expression. In the presence of adipogenic stimuli, lamin A/C knockdown promotes adipocytes differentiation, as assessed by the detection of an increase in Oil Red O staining. RT-PCR analysis showed that lamin A/C shRNA resulted in increased mRNA expression of PPARγ2 and aP2 during adipocyte differentiation. These results suggest that decreased lamin A/C expression levels not only suppress osteoblast phenotypes but also promote adipocyte differentiation in C26 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afilalo J, Sebag IA, Chalifour LE, Rivas D, Akter R, Sharma K, Duque G (2007) Age-related changes in lamin A/C expression in cardiomyocytes. Am J Physiol Heart Circ Physiol 293:H1451–H1456

    Article  PubMed  CAS  Google Scholar 

  • Akter R, Rivas D, Geneau G, Drissi H, Duque G (2009) Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293

    Article  PubMed  CAS  Google Scholar 

  • Andres V, Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187:945–957

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K (2001) Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 114:1483–1489

    PubMed  CAS  Google Scholar 

  • Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    PubMed  CAS  Google Scholar 

  • Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15:653–663

    Article  PubMed  CAS  Google Scholar 

  • Boone C, Gregoire F, De Clercq L, Remacle C (1999) The modulation of cell shape influences porcine preadipocyte differentiation. In Vitro Cell Dev Biol Anim 35:61–63

    Article  PubMed  CAS  Google Scholar 

  • Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86:967–1008

    Article  PubMed  CAS  Google Scholar 

  • Classon M, Kennedy BK, Mulloy R, Harlow E (2000) Opposing roles of pRB and p107 in adipocyte differentiation. Proc Natl Acad Sci USA 97:10826–10831

    Article  PubMed  CAS  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185

    Article  PubMed  CAS  Google Scholar 

  • Dardick I, Poznanski WJ, Waheed I, Setterfield G (1976) Ultrastructural observations on differentiating human preadipocytes cultured in vitro. Tissue Cell 8:561–571

    Article  PubMed  CAS  Google Scholar 

  • Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C, Gotzmann J, Hutchison CJ, Foisner R (2006) Lamina-associated polypeptide 2alpha regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J Cell Biol 173:83–93

    Article  PubMed  CAS  Google Scholar 

  • Duque G (2008) Bone and fat connection in aging bone. Curr Opin Rheumatol 20:429–434

    Article  PubMed  CAS  Google Scholar 

  • Duque G, Rivas D (2006) Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech Ageing Dev 127:378–383

    Article  PubMed  CAS  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1990) The permeability of the nuclear envelope in dividing and nondividing cell cultures. J Cell Biol 111:1–8

    Article  PubMed  CAS  Google Scholar 

  • Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20:486–500

    Article  PubMed  CAS  Google Scholar 

  • Gregoire F, Hauser-Gunsbourg N, Remacle C (1986) Ultrastructural analysis of the in vitro differentiation of female rat preadipocytes. Biol Cell 56:127–136

    PubMed  CAS  Google Scholar 

  • Ito S, Suzuki N, Kato S, Takahashi T, Takagi M (2007) Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone 40:84–92

    Article  PubMed  CAS  Google Scholar 

  • Jing K, Heo JY, Song KS, Seo KS, Park JH, Kim JS, Jung YJ, Jo DY, Kweon GR, Yoon WH, Hwang BD, Lim K, Park JI (2009) Expression regulation and function of Pref-1 during adipogenesis of human mesenchymal stem cells (MSCs). Biochim Biophys Acta 1791:816–826

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Kawabata N, Suzuki N, Ohmura M, Takagi M (2009) Bone morphogenetic protein-2 induces the differentiation of a mesenchymal progenitor cell line, ROB-C26, into mature osteoblasts and adipocytes. Life Sci 84:302–310

    Article  PubMed  CAS  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60

    Article  PubMed  Google Scholar 

  • Lelliott CJ, Logie L, Sewter CP, Berger D, Jani P, Blows F, O’Rahilly S, Vidal-Puig A (2002) Lamin expression in human adipose cells in relation to anatomical site and differentiation state. J Clin Endocrinol Metab 87:728–734

    Article  PubMed  CAS  Google Scholar 

  • Li W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, Fatkin D, Duque G (2011) Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS One 6:e19313

    Article  PubMed  CAS  Google Scholar 

  • Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991

    Article  PubMed  CAS  Google Scholar 

  • Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301

    Article  PubMed  CAS  Google Scholar 

  • Nagayama M, Uchida T, Gohara K (2007) Temporal and spatial variations of lipid droplets during adipocyte division and differentiation. J Lipid Res 48:9–18

    Article  PubMed  CAS  Google Scholar 

  • Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, Kesteven SH, Michalicek J, Otway R, Verheyen F, Rainer S, Stewart CL, Martin D, Feneley MP, Fatkin D (2004) Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest 113:357–369

    PubMed  CAS  Google Scholar 

  • Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3–L1 preadipocytes. J Cell Biol 87:180–196

    Article  PubMed  CAS  Google Scholar 

  • Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213:5–25

    Article  PubMed  CAS  Google Scholar 

  • Rauner M, Sipos W, Goettsch C, Wutzl A, Foisner R, Pietschmann P, Hofbauer LC (2009) Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 24:78–86

    Article  PubMed  CAS  Google Scholar 

  • Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378

    PubMed  CAS  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  PubMed  CAS  Google Scholar 

  • Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406

    Article  PubMed  CAS  Google Scholar 

  • Sul HS (2009) Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. Mol Endocrinol 23:1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Szczerbal I, Bridger JM (2010) Association of adipogenic genes with SC-35 domains during porcine adipogenesis. Chromosome Res 18:887–895

    Article  PubMed  CAS  Google Scholar 

  • Szczerbal I, Foster HA, Bridger JM (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118:647–663

    Article  PubMed  CAS  Google Scholar 

  • Takamori Y, Tamura Y, Kataoka Y, Cui Y, Seo S, Kanazawa T, Kurokawa K, Yamada H (2007) Differential expression of nuclear lamin, the major component of nuclear lamina, during neurogenesis in two germinal regions of adult rat brain. Eur J Neurosci 25:1653–1662

    Article  PubMed  Google Scholar 

  • Tilgner K, Wojciechowicz K, Jahoda C, Hutchison C, Markiewicz E (2009) Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of beta-catenin. J Cell Sci 122:401–413

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten VL, Renes J, Ramaekers FC, Kamps M, Kuijpers HJ, Verheyen F, Wabitsch M, Steijlen PM, van Steensel MA, Broers JL (2011) Reorganization of the nuclear lamina and cytoskeleton in adipogenesis. Histochem Cell Biol 135:251–261

    Article  PubMed  CAS  Google Scholar 

  • Willis ND, Cox TR, Rahman-Casans SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruine A, Hutchison CJ (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3:e2988

    Article  PubMed  Google Scholar 

  • Yamaguchi A, Kahn AJ (1991) Clonal osteogenic cell lines express myogenic and adipocytic developmental potential. Calcif Tissue Int 49:221–225

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Katagiri T, Ikeda T, Wozney JM, Rosen V, Wang EA, Kahn AJ, Suda T, Yoshiki S (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol 113:681–687

    Article  PubMed  CAS  Google Scholar 

  • Yeh WC, Cao Z, Classon M, McKnight SL (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181

    Article  PubMed  CAS  Google Scholar 

  • Yermen B, Tomas A, Halban PA (2007) Pro-survival role of gelsolin in mouse beta-cells. Diabetes 56:80–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grant from the dental research center (M.T) and Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (M.N., 21791799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Naito.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, M., Omoteyama, K., Mikami, Y. et al. Suppression of lamin A/C by short hairpin RNAs promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26. Histochem Cell Biol 137, 235–247 (2012). https://doi.org/10.1007/s00418-011-0890-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0890-3

Keywords

Navigation