Skip to main content
Log in

Albumin-based nanoparticles as magnetic resonance contrast agents: II. Physicochemical characterisation of purified and standardised nanoparticles

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We are developing a nanoparticulate histochemical reagent designed for histochemistry in living animals (molecular imaging), which should finally be useful in clinical imaging applications. The iterative development procedure employed involves conceptual design of the reagent, synthesis and testing of the reagent, then redesign based on data from the testing; each cycle of testing and development generates a new generation of nanoparticles, and this report describes the synthesis and testing of the third generation. The nanoparticles are based on human serum albumin and the imaging modality selected is magnetic resonance imaging (MRI). Testing the second particle generation with newly introduced techniques revealed the presence of impurities in the final product, therefore we replaced dialysis with diafiltration. We introduced further testing methods including thin layer chromatography, arsenazo III as chromogenic assay for gadolinium, and several versions of polyacrylamide gel electrophoresis, for physicochemical characterisation of the nanoparticles and intermediate synthesis compounds. The high grade of chemical purity achieved by combined application of these methodologies allowed standardised particle sizes to be achieved (low dispersities), and accurate measurement of critical physicochemical parameters influencing particle size and imaging properties. Regression plots confirmed the high purity and standardisation. The good degree of quantitative physicochemical characterisation aided our understanding of the nanoparticles and allowed a conceptual model of them to be prepared. Toxicological screening demonstrated the extremely low toxicity of the particles. The high magnetic resonance relaxivities and enhanced mechanical stability of the particles make them an excellent platform for the further development of MRI molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 11:3578–3581

    Google Scholar 

  • Alimarin IP, Savvin SB (1966) Application of arsenazo III and other azo-compounds in the photometric determination of certain elements. Pure Appl Chem 13:445–456

    Article  CAS  Google Scholar 

  • André C, Guillaume YC (2004) Zinc–human serum albumin association: testimony of two binding sites. Talanta 63:503–508

    Article  PubMed  CAS  Google Scholar 

  • Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc Natl Acad Sci 98:2375–2380

    Article  PubMed  CAS  Google Scholar 

  • Basargin NN, Ivanov VM, Kuznetsov VV, Mikhaliova AV (2000) 40 years since the discovery of the arsenazo III reagent. J Anal Chem 55:204–210

    Article  CAS  Google Scholar 

  • Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol 188:586–592

    Article  Google Scholar 

  • Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  • Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181

    PubMed  CAS  Google Scholar 

  • Chick H, Martin CJ (1912) The density and solution volume of some proteins. Chem Ind Kolloide Zeitsch 11:102–107

    Article  Google Scholar 

  • Choppin GR, Schaab KM (1996) Lanthanide(III) complexation with ligands as possible contrast enhancing agents for MRI. Inorganica Chim Acta 252:299–310

    Article  CAS  Google Scholar 

  • Davidson SE, McKenzie JL, Beard MEJ, Hart DNJ (1988) The tissue distribution of the 3α-fucosyl-N-acetyl lactosamine determinant recognized by the Cd15 monoclonal antibodies Cmrf-7 and 27. Pathology 20:24–31

    Article  PubMed  CAS  Google Scholar 

  • Debbage PL (1996) A systematic histochemical investigation in mammals of the dense glycocalyx glycosylations common to all cells bordering the interstitial fluid compartment of the brain. Acta Histochem 98:9–28

    PubMed  CAS  Google Scholar 

  • Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172

    Article  PubMed  CAS  Google Scholar 

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    Article  PubMed  CAS  Google Scholar 

  • Fehske KJ, Muller WE, Wollert U (1981) The location of drug binding sites in human serum albumin. Biochem Pharmacol 30:687–692

    Article  PubMed  CAS  Google Scholar 

  • Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    Article  PubMed  CAS  Google Scholar 

  • Foster JF, Sogami M, Peterson HA, Leonard WJ (1965) The microheterogeneity of plasma albumins. II. Preparation and solubility properties of subfractions. J Biol Chem 240:2503–2507

    PubMed  Google Scholar 

  • Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Baohua J, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Nat Acad Sci USA 100:5597–5600

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci 107:3487–3492

    Article  PubMed  Google Scholar 

  • Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk. J Clin Epidemiol 50:693–703

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez ER, Kannewurf BS (1998) Clinical review of appropriate uses for albumin. US Pharm 23:HS15–HS26

    Google Scholar 

  • Griffel MI, Kaufman BS (1992) Pharmacology of colloids and crystalloids. Crit Care Clin 8:235–253

    PubMed  CAS  Google Scholar 

  • Griffiths JR, Glickson JD (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41:75–89

    Article  PubMed  CAS  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  • Hengerer A, Grimm J (2006) Molecular magnetic resonance imaging. Biomed Imaging Interv J 2:e8. doi:10.2349/biij.2.2.e8. http://www.biij.org/2006/2/e8

  • Irache JM, Durrer C, Duchene D, Ponchel G (1994) In vitro study of lectin–latex conjugates for specific bioadhesion. J Control Release 31:181–188

    Article  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862

    Article  PubMed  CAS  Google Scholar 

  • Karst D, Yang Y (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47:4845–4850

    Article  CAS  Google Scholar 

  • Końska G, Zamorska L, Pituch-Noworolska A, Szmaciarz M, Guillot J (2003) Application of fluorescein-labelled lectins with different glycan-binding specificities to the studies of cellular glycoconjugates in human full-term placenta. Folia Histochem Cytobiol 41:155–160

    PubMed  Google Scholar 

  • Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    PubMed  CAS  Google Scholar 

  • Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649

    Article  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270

    Article  PubMed  Google Scholar 

  • Maceke HR, Riesen A, Ritter W (1989) The molecular structure of indium-DTPA. J Nucl Med 30:1235–1239

    Google Scholar 

  • Magnotti R (2008) Detection of gadolinium chelates. World Patent WO 2008/045767 A2

  • Means GE, Feeney RE (1995) Reductive alkylation of proteins. Anal Biochem 224:1–16

    Article  PubMed  CAS  Google Scholar 

  • Montero EI, Benedetti BT, Mangrum JB, Oehlsen MJ, Qu Y, Farrell NP (2007) Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design. Dalton Trans 43:4938–4942

    Article  PubMed  CAS  Google Scholar 

  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) Review article: lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja TN, Croxen RL, Panda S, Knight RA, Keenan KA, Brown SL, Fenstermacher JD, Ewing JR (2006) Application of arsenazo III in the preparation and characterization of an albumin-linked, gadolinium-based macromolecular magnetic resonance contrast agent. J Neurosci Meth 157:238–245

    Article  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-ß spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J (1996) In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials 17:679–684

    Article  PubMed  CAS  Google Scholar 

  • Paschkunova-Martic I, Kremser C, Mistlberger K, Shcherbakova N, Dietrich H, Talasz H, Zou Y, Hugl B, Galanski M, Sölder E, Pfaller K, Höliner I, Buchberger W, Keppler B, Debbage P (2005) Design, synthesis, physical and chemical characterization, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 123:283–301

    Article  PubMed  CAS  Google Scholar 

  • Peters T Jr (1985) Serum albumin. Adv Protein Chem 37:161–245

    Article  PubMed  CAS  Google Scholar 

  • Putnam FW (1984) The Plasma Proteins, vol 4, 2nd edn. Academic Press, London

    Google Scholar 

  • Rainey TG, Read CA (1994) The pharmacological approach to the critically ill patient, 3rd edn. Williams & Wilkins, Baltimore, pp 272–290

    Google Scholar 

  • Rehman S, Jayson GC (2005) Molecular imaging of antiangiogenic agents. Oncol Cancer Imaging 10:92–103

    CAS  Google Scholar 

  • Rinck PA (2008) Radiologists meet with heavy collateral damage. Diagnostic Imaging Europe, November 2008, pp 19–22

  • Robbens J, Vanparys C, Nobels I, Blust R, van Hoecke K, Janssen C, de Schamphelaere K, Roland K, Blanchard G, Silvestre F, Gillardin V, Kestemont P, Anthonissen R, Toussaint O, Vankoningsloo S, Saout C, Alfaro-Moreno E, Hoet P, Gonzalez L, Dubruel P, Troisfontaines P (2010) Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications. Toxicology 296:170–181

    Article  CAS  Google Scholar 

  • Rocke AJ (2010) Image and reality: Kekulé, Kopp, and the scientific imagination. University of Chicago Press, USA, p 416

    Google Scholar 

  • Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247:608–612

    Article  PubMed  Google Scholar 

  • Rohwer H, Hosten E (1997) pH dependence of the reactions of arsenazo III with the lanthanides. Anal Chim Acta 339:271–277

    Article  CAS  Google Scholar 

  • Rowatt E, Williams RJP (1989) The interaction of cations with the dye arsenazo III. Biochem J 259:295–298

    PubMed  CAS  Google Scholar 

  • Rowe JD, Bobilya DJ (2000) Albumin facilitates zinc acquisition by endothelial cells. Proc Soc Exp Biol Med 224:178–186

    Article  PubMed  CAS  Google Scholar 

  • Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot Ch, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewicz KS (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Schnabel J (2010) The dark side of proteins. Nature 464:828–829

    Article  PubMed  CAS  Google Scholar 

  • Shih C (1995) Chain-end scission in acid catalyzed hydrolysis of poly(D, Llactide) in solution. J Control Release 34:9–15

    Article  CAS  Google Scholar 

  • Shrake A, Frazier D, Schwarz FP (2005) Thermal stabilization of human albumin by medium- and short-chain n-alkyl fatty acid anions. Biopolymers 81:235–248

    Article  CAS  Google Scholar 

  • Soenen SJH, Desender L, De Cuyper M (2007) Complexation of gadolinium(III) ions on top of nanometre-sized magnetoliposomes. Int J Environ Anal Chem 87:783–796

    Article  CAS  Google Scholar 

  • Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16:165–179

    PubMed  CAS  Google Scholar 

  • Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Interdomain zinc site on human albumin. Proc Natl Acad Sci 100:3701–3706

    Article  PubMed  CAS  Google Scholar 

  • Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnöfer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Fröhlich E, Keppler B, Jaschke W, Debbage P (2010) Albumin-based nanoparticles as Magnetic Resonance contrast agents: I. Concept, first syntheses and characterisation. Histochem Cell Biol 133:375–404. doi:10.1007/s00418-010-0676-z

    Article  PubMed  CAS  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    Article  PubMed  CAS  Google Scholar 

  • Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170

    Article  PubMed  CAS  Google Scholar 

  • Utsumi H, Yamada K, Ichikawa K, Sakai K, Kinoshita Y, Matsumoto S, Nagai M (2006) Simultaneous molecular imaging of redox reactions monitored by overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci 103:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Laird Forrest M, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60:929–938

    Article  PubMed  CAS  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Karihaloo BL, Duan HL (2007) Nano-mechanics or how to extend continuum mechanics to nano-scale. Bull Polish Acad Sci 55:133–140

    CAS  Google Scholar 

  • Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with αvß3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  • Zalipsky S (1995a) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182

    Article  CAS  Google Scholar 

  • Zalipsky S (1995b) Functionalized poly(ethy1ene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem Rev 6:150–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Austrian Nano-Initiative, the Austrian Science Foundation (FWF) (Project N201-NAN) and the Austrian National Bank Jubilee Programme supported this work (Projects 9273, 10844, 11574 and 13096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Debbage.

Additional information

A. A. Abdelmoez and G. C. Thurner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelmoez, A.A., Thurner, G.C., Wallnöfer, E.A. et al. Albumin-based nanoparticles as magnetic resonance contrast agents: II. Physicochemical characterisation of purified and standardised nanoparticles. Histochem Cell Biol 134, 171–196 (2010). https://doi.org/10.1007/s00418-010-0726-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0726-6

Keywords

Navigation