Skip to main content
Log in

Anti-angiogenic effects of thalidomide: expression of apoptosis-inducible active-caspase-3 in a three-dimensional collagen gel culture of aorta

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The anti-angiogenic properties of thalidomide have led to the use of the agent as a remedy for multiple myeloma. Nevertheless, the anti-angiogenic moiety of thalidomide remains unidentified. In this study we examined the anti-angiogenic effects of thalidomide in an in vitro model using a three-dimensional collagen gel culture. Angiogenesis was significantly inhibited when the culture was treated with thalidomide plus cytochrome P-450 (CYP2B4), and the migrating cells and tubules were positive for active-caspase-3 in an accompanying immunohistochemical investigation. Transmission electron microscopic observation also confirmed that active-caspase-3-positive cells demonstrated apoptotic characteristics. This study is the first to morphologically demonstrate the effect of thalidomide in directly inducing the apoptosis of new tubules and migrating cells on a three-dimensional collagen gel culture of aorta. Taken together with earlier findings, our new results indicate that the thalidomide-induced inhibition of angiogenesis involves apoptosis in addition to the suppression of TNF-α and inhibition of cell migration from aorta explants, i.e., the factors important for capillarogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3
Fig. 4A, B
Fig. 5A, B
Fig. 6A, B
Fig. 7A–D

Similar content being viewed by others

References

  • Akita M, Murata E, Kaneko K, Ghaida J, Merker H-J (1993) Cell shape and arrangement of cultured aortic smooth muscle cells grown on collagen gels. Cell Tissue Res 274:91–95

    CAS  PubMed  Google Scholar 

  • Akita M, Murata E, Merker H-J, Kaneko K (1997a) Formation of new capillary-like tubes in a three-dimensional in vitro model (aorta/collagen gel). Ann Anat 179:127–136

    CAS  Google Scholar 

  • Akita M, Murata E, Merker H-J, Kaneko K (1997b) Morphology of capillary-like structures in a three-dimensional aorta/collagen gel culture. Ann Anat 179:137–147

    CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    CAS  PubMed  Google Scholar 

  • Bauer KS, Dixon SC, Figg WD (1998) Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 55:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Bishop ET, Bell GT, Bloor S, Broom IJ, Hendy NF, Wheatley DN (1999) An in vitro model of angiogenesis: basic features. Angiogenesis 3:335–344

    Article  CAS  PubMed  Google Scholar 

  • D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085

    PubMed  Google Scholar 

  • Diggle GE (2001) Thalidomide: 40 years on. Int J Clin Pract 55:627–631

    CAS  PubMed  Google Scholar 

  • Dredge K, Marriott JB, Macdonald CD, Man H-W, Chen R, Muller GW, Stirling D, Dalgleish AG (2002) Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 87:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 181:182–186

    Google Scholar 

  • Fujita K, Asami Y, Murata E, Akita M, Kaneko K (2002) Effects of thalidomide, cytochrome P-450 and TNF-αon angiogenesis in a three-dimensional collagen gel-culture. Okajimas Folia Anat Jpn 79:101–106

    CAS  PubMed  Google Scholar 

  • Han DC, Lee MY, Shin KD, Jeon SB, Kim JM, Son KH, Kim HC, Kim HM, Kwon BM (2004) 2′-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J Biol Chem (279:6911–6920). [Epub ahead of print]

    Google Scholar 

  • Lin HL, Liu TY, Wu CW, Chi CW (2001) 2-Methoxyestradiol-induced caspase-3 activation and apoptosis occurs through G (2)/M arrest dependent and independent pathways in gastric carcinoma cells. Cancer 92:500–509

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP, Anderson KC (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  CAS  PubMed  Google Scholar 

  • Nau H (1986) Species differences in pharmacokinetics and drug teratogenesis. Environ Health Perspect 70:113–129

    CAS  PubMed  Google Scholar 

  • Neubert R, Merker H-J, Neubert D (1995) Developmental model for thalidomide action. Nature 400:1500–1502

    Google Scholar 

  • Parman T, Wiley MJ, Wells PG (1999) Free radical-medicated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5:582–585

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar SV (2001) Thalidomide in the treatment of multiple myeloma. Expert Rev Anticancer Ther 1:2–28

    Google Scholar 

  • Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6:3111–3116

    CAS  PubMed  Google Scholar 

  • Sauer H, Guenther J, Hescheler J, Wartenberg M (2000) Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals. Am J Pathol 156:151–158

    CAS  PubMed  Google Scholar 

  • Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    CAS  PubMed  Google Scholar 

  • Vesela D, Vesely D, Jelinek R (1994) Embryotoxicity in chick embryo of thalidomide hydrolysis products following metabolic activation by rat liver homogenate. Funct Dev Morphol 4:313–316

    CAS  PubMed  Google Scholar 

  • Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn L (1997) Oxidative damage in chemical teratogenesis. Mutat Res 396:65–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant to the Saitama Medical School Research Center for Genomic Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, K., Asami, Y., Tanaka, K. et al. Anti-angiogenic effects of thalidomide: expression of apoptosis-inducible active-caspase-3 in a three-dimensional collagen gel culture of aorta. Histochem Cell Biol 122, 27–33 (2004). https://doi.org/10.1007/s00418-004-0669-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0669-x

Keywords

Navigation