Skip to main content
Log in

Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The pituitary protein transcription factor (Pit-1) regulates the differentiation and proliferation of somatotrophs, lactotrophs, and thyrotrophs and the c-Myc oncoprotein plays a critical role in somatotroph and lactotroph differentiation. Both were involved in the genesis of pituitary tumors. The combined analysis of Pit-1 and c-Myc expression and the morphometric and biochemical parameters of the lactotroph population after treatment with estrogen for 7, 20, and 60 days provided new information on molecular mechanisms implicated in the formation of prolactinomas. Estrogen treatment for 7 days caused a significant proliferation of lactotrophs (70%) and this increase reached an additional 55% at 60 days. The proliferation of lactotrophs was concurrent with higher serum and pituitary prolactin levels. An augmentation of Pit-1 and c-Myc expression in both cytoplasmic and nuclear extracts after estrogen can be associated with lactotroph proliferation. Moreover, the multistep correlation analysis revealed that the expression of nuclear Pit-1 was the strongest predictor of prolactinoma development. Also the Pit-1 immunolocalization in nuclei of gonadotrophs suggests the activation of genes involved in transdifferentiation of gonadotroph to lactotroph. Therefore, the understanding of the Pit-1 function may help in the design of strategies to control the secretion and proliferation of pituitary tumors of the somatomammotrope lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7a, b
Fig. 8a, b
Fig. 9
Fig. 10a, b

Similar content being viewed by others

References

  • Asa S, Ezzat S (1999) Molecular determinants of pituitary cytodifferentiation. Pituitary 1:159–168

    CAS  PubMed  Google Scholar 

  • Berczi I, Nagy E, de Toledo S, Matusik R, Friesen H (1999) Pituitary hormones regulate c-myc and DNA synthesis in lymphoid tissue. J Immunol 146:2201–2206

    Google Scholar 

  • Dang C, Resar L, Emison E, Kim S, Li Q, Prescott J, Wonsey D, Zeller K (1999) Function of c-Myc oncogene transcription factors. Exp Cell Res 253:63–77

    Article  CAS  PubMed  Google Scholar 

  • De Paul A, Pons P, Aoki A, Torres A (1997) Heterogeneity of pituitary lactotrophs: immunocytochemical identification of functional subtypes. Acta Histochem 99:277–289

    PubMed  Google Scholar 

  • Dollé P, Castrillo JL, Theill LE, Deerinck T, Ellismen M, Karin M (1990) Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell 60:809–820

    Article  PubMed  Google Scholar 

  • Frens G (1973) Controlled nucleation of the regulation of the particle size in monodispersed gold solution. Nat Phys Sci 24:20–22

    Google Scholar 

  • Gavier MF, Aoki A, Orgnero de Gaisán E (1999) Prolactin secretory bypath exposed in cultured lactotrophs. Histochem J 31:661–670

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles-Parra S, Chowen J, García Segura L, Argente J (1996) In vivo and in vitro regulation of pituitary transcription factor-1 (Pit-1) by changes in the hormone environment. Neuroendocrinology 63:3–15

    PubMed  Google Scholar 

  • Heaney A, Melmed S (2000) New pituitary oncogenes. Endocr Relat Cancer 7:3–15

    CAS  PubMed  Google Scholar 

  • Hovarth E, Kovacs K, Schithauer B (1999) Pituitary hyperplasia. Pituitary 1:169–180

    Article  CAS  PubMed  Google Scholar 

  • Lloyd R, Osamura R (1997) Transcription factors in normal and neoplastic pituitary tissue. Microsc Res Tech 39:168–181

    Article  CAS  PubMed  Google Scholar 

  • Lutz W, Leon JB, Eilers M (2002) Contributions of c-myc to tumorogenesis. Biochim Biophys Acta 1602:61–71

    Article  CAS  PubMed  Google Scholar 

  • Majó G, Lorenzo M, Blasi J, Aguado F (1999) Exocytotic protein components in rat pituitary gland after long-term estrogen administration. J Endocrinol 161:323–331

    PubMed  Google Scholar 

  • Maldonado C, Aoki A (1986) Improvement of prolactin immuno-labeling in osmium-fixed acrylic-embedded pituitary gland. Basic Appl Histochem 30:301–305

    CAS  PubMed  Google Scholar 

  • Maldonado C, Aoki A (1994) Occurrence of atypical lactotroph associated with levels of prolactin secretory activity. Biocell 18:83–95

    CAS  Google Scholar 

  • Neufeld T, Edgar B (1998) Connections between growth and cell cycle. Curr Opin Cell Biol 10:784–790

    CAS  PubMed  Google Scholar 

  • Newman G, Jasani B, Williams D (1989) Multiple hormone storage by cells of human pituitary. J Histochem Cytochem 37:1183–1192

    CAS  PubMed  Google Scholar 

  • Piroli G, Torres A, Pietranera L, Grillo C, Ferrini M, Lux-Lantos V, Aoki A, De Nicola (2000) Sexual dimorphism in diethylstilbestrol-induced prolactin pituitary tumors in F344 rats. Neuroendocrinology 72:80–90

    Article  CAS  PubMed  Google Scholar 

  • Raghavan R, Harrison D, Ince P (1994) Oncoprotein immunoreactivity in human pituitary tumors. Clin Endocrinol 40:117–126

    CAS  Google Scholar 

  • Ryan K, Birnie G (1996) Myc oncogene: the enigmatic family. Biochem J 314:713–721

    CAS  PubMed  Google Scholar 

  • Simmons D, Voss J, Ingraham H, Holloway J, Broide R, Rosenfeld M, Swanson L (1990) Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 4:695–711

    CAS  PubMed  Google Scholar 

  • Slater M (1991) Plurihormonality in secretory granules of normal human pituitary. An immunoelectron microscopy study. Experientia 47:267–270

    CAS  PubMed  Google Scholar 

  • Spady T, McComb R, Shull J (1999) Estrogen action in the regulation of cell proliferation, cell survival and tumorigenesis in the rat anterior pituitary gland. Genes Dev 11:217–233

    Article  CAS  Google Scholar 

  • Sugawara A, Yen PM, Darling DS, Chin W (1993) Characterization and tissue expression of multiple triiodothyronine receptor-auxiliary proteins and their relationship to the retinoid X-receptor. Endocrinology 133:965–971

    Article  CAS  PubMed  Google Scholar 

  • Suhardja A, Kovacs K, Rutka J (2001) Role of transcription factors in the pathogenesis of pituitary adenomas: a review. J Neurooncol 55:185–193

    Article  CAS  PubMed  Google Scholar 

  • Torres A, Aoki A (1987) Release of big and small molecular forms of prolactin: dependence upon dynamic state of the lactotroph. J Endocrinol 114:213–220

    CAS  PubMed  Google Scholar 

  • Turner H, Wass JAH (1999) Are markers of proliferation valuable in the histological assessment of pituitary tumours? Pituitary 1:147–151

    Article  CAS  PubMed  Google Scholar 

  • Velkeniers B, Hooghe-Peters E (1998) From prolactin cell to prolactinoma: implications of ontogenic mechanisms in diagnosis and management. Endocr Relat Cancer 5:27–36

    CAS  Google Scholar 

  • Vidal S, Román A, Oliveira MC, De La Cruz L, Moya L (1998) Simultaneous localization of Pit-1 protein and gonadotropins on the same cell type in the anterior pituitary glands of the rat. Histochem Cell Biol 110:183–188

    Article  CAS  PubMed  Google Scholar 

  • Vidal S, Horvath E, Kovacs K, Lloyd R, Smyth H (2001) Reversible transdifferentiation: interconversion of somatotrophs and lactotrophs in pituitary hyperplasia. Mod Pathol 14:20–28

    CAS  PubMed  Google Scholar 

  • Wiklund J, Gorski J (1982) Genetic differences in estrogen-induced deoxyribonucleic acid synthesis in the rat pituitary: correlations with pituitary tumor susceptibility. Endocrinology 111:1140–1149

    CAS  PubMed  Google Scholar 

  • Wiklund J, Wertz N, Gorski J (1981) A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 109:1700–1707

    CAS  PubMed  Google Scholar 

  • Wolschak M, Robets JL (1994) C-myc, c-fos and c-myb gene expression in human pituitary adenomas. J Clin Endocr Metab 79:253–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms Mercedes Guevara, Ms Irma Alegre, and Ms Lucía Artino for their excellent technical assistance. We are particularly indebted to Biochem. Félix D. Roth for his precious help in computer imaging. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT). J.H.M. is a Doctoral Fellow of SECyT, and A.L.D.P., S.M., A.A., and A.I.T. are established investigators of CONICET

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Inés Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukdsi, J.H., De Paul, A.L., Muñoz, S. et al. Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochem Cell Biol 121, 453–462 (2004). https://doi.org/10.1007/s00418-004-0661-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0661-5

Keywords

Navigation