Skip to main content
Log in

Smoothelin-positive cells in human and porcine semilunar valves

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Our aim was to further characterize the interstitial cell phenotypes of normal porcine and human semilunar valves, information necessary for the design of bioengineered valves and for the understanding of valve disease processes such as aortic valve sclerosis. Existence of fibroblasts, myofibroblasts, and smooth muscle-like cells within semilunar heart valves has been established. However, the nature of the smooth muscle cell population has been controversial. We used immunochemical and western blotting methods to determine the status of smoothelin and smooth muscle α-actin in the valve. Our examination of valve interstitial cells confirmed the presence of terminally differentiated, contractile smooth muscle cells in situ. They were arranged in small bundles of 5–35 cells within the ventricularis or as individual cells scattered throughout the valvular layers in vivo, and were present in cells explanted from the valves in vitro. Colocalization of these proteins in semilunar heart valves was achieved with double-labeling experiments. Protein extraction, followed by coimmunoprecipitation, electrophoresis, and western blotting confirmed the immunochemical analysis and suggested that smooth muscle α-actin and smoothelin interact, as has been previously postulated. The presence of contractile smooth muscle within the valve may be an important factor in understanding valve pathology and in the design of tissue engineering efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H
Fig. 2A–F
Fig. 3A–F
Fig. 4A–H
Fig. 5A–L
Fig. 6A–F
Fig. 7A–C

Similar content being viewed by others

References

  • Agmon Y, Khandheria BK, Meissner I, Sicks JR, O’Fallon WM, Wiebers DO, Whisnant JP, Seward JB, Tajik AJ (2000) Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol 38:827–834

    Article  Google Scholar 

  • Aronow WS, Ahn C (1994) Correlation of serum lipids with the presence or absence of coronary artery disease in 1,793 men and women aged ≥62 years. Am J Cardiol 73:702–703

    CAS  PubMed  Google Scholar 

  • Aronow WS, Schwartz KS, Koenigsberg M (1987) Correlation of serum lipids, calcium and phosphorus, diabetes mellitus, aortic valve stenosis and history of systemic hypertension with presence or absence of mitral anular calcium in persons older than 62 years in a long-term health care facility. Am J Cardiol 59:381–382

    CAS  PubMed  Google Scholar 

  • Bairati A, DeBiasi S (1981) Presence of a smooth muscle system in aortic valve leaflets. Anat Embryol (Berl) 161:329–340

    Google Scholar 

  • Bar H, Wende P, Watson L, Denger S, van Eys G, Kreuzer J, Jahn L (2002) Smoothelin is an indicator of reversible phenotype modulation of smooth muscle cells in balloon-injured rat carotid arteries. Basic Res Cardiol 97:9–16

    Article  PubMed  Google Scholar 

  • Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G (1999) Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res 85:99–107

    CAS  PubMed  Google Scholar 

  • Cimini M, Rogers KA, Boughner DR (2002) Aortic valve interstitial cells: an evaluation of cell viability and cell phenotype over time. J Heart Valve Dis 11:881–887

    PubMed  Google Scholar 

  • De Biasi S, Vitellaro-Zuccarello L (1982) Intrinsic innervation of porcine semilunar heart valves. Anat Embryol (Berl) 165:71–79

    Google Scholar 

  • Della Rocca F, Sartore S, Guidolin D, Bertiplaglia B, Gerosa G, Casarotto D, Pauletto P (2000) Cell composition of the human pulmonary valve: a comparative study with the aortic valve: -the VESALIO Project. Ann Thorac Surg 70:1594–1600

    Article  PubMed  Google Scholar 

  • Durbin AD, Gotlieb AI (2002) Advances towards understanding heart valve response to injury. Cardiovasc Pathol 11:69–77

    Article  PubMed  Google Scholar 

  • Edwards J (1963) Etiology of calcific aortic stenosis. Circulation 26:17–18

    Google Scholar 

  • Eyden BP, Ponting J, Davies H, Bartley C, Torgersen E (1994) Defining the myofibroblast: normal tissues, with special reference to the stromal cells of Wharton’s jelly in human umbilical cord. J Submicrosc Cytol Pathol 26:347–355

    CAS  PubMed  Google Scholar 

  • Filip DA, Radu A, Simionescu M (1986) Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 59:310–320

    CAS  PubMed  Google Scholar 

  • Filip DA, Nistor A, Bulla A, Radu A, Lupu F, Simionescu M (1987) Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis 67:199–214

    CAS  PubMed  Google Scholar 

  • Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE (1999) Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 19:1589–1594

    PubMed  Google Scholar 

  • Gotoh T, Kuroda T, Yamasawa M, Nishinaga M, Mitsuhashi T, Seino Y, Nagoh N, Kayaba K, Yamada S, Matsuo H (1995) Correlation between lipoprotein(a) and aortic valve sclerosis assessed by echocardiography (the JMS Cardiac Echo and Cohort Study). Am J Cardiol 76:928–932

    Article  CAS  PubMed  Google Scholar 

  • Gross L, Kugel M (1931) Topographic anatomy and histology of the valves in the human heart. Am J Pathol 7:445–473

    Google Scholar 

  • Hinck L, Nathke IS, Papkoff J, Nelson WJ (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 125:1327–1340

    CAS  PubMed  Google Scholar 

  • Hoagland PM, Cook EF, Flatley M, Walker C, Goldman L (1985) Case-control analysis of risk factors for presence of aortic stenosis in adults (age 50 years or older). Am J Cardiol 55:744–747

    CAS  PubMed  Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JEJ (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102: III44–III49

    CAS  PubMed  Google Scholar 

  • Jester JV, Rodrigues MM, Herman IM (1987) Characterization of avascular corneal wound healing fibroblasts. New insights into the myofibroblast. Am J Pathol 127:140–148

    CAS  PubMed  Google Scholar 

  • Johansson B, Eriksson A, Ramaekers F, Thornell L (1999a) Smoothelin in adult and developing human arteries and myocardium. Histochem Cell Biol 112:291–299

    Article  CAS  PubMed  Google Scholar 

  • Johansson B, Eriksson A, Ramaekers F, Thornell LE (1999b) Smoothelin and intermediate filament proteins in human aortocoronary saphenous vein by-pass grafts. Histochem J 31:723–727

    Article  CAS  PubMed  Google Scholar 

  • Johnson CM, Hanson MN, Helgeson SC (1987) Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics. J Mol Cell Cardiol 19:1185–1193

    CAS  PubMed  Google Scholar 

  • Kawano H, Shirai T, Kawano Y, Okada R (1996) Morphological study of vagal innervation in human semilunar valves using a histochemical method. Jpn Circ J 60:62–66

    Article  CAS  PubMed  Google Scholar 

  • Kramer J, Aguirre-Artera AM, Thiel C, Gross CM, Dietz R, Cardoso MC, Leonhardt H (1999) A novel isoform of the smooth muscle cell differentiation merker smoothclin. J Mol Med 77:294-298

    Google Scholar 

  • Kramer J, Quensel C, Meding J, Cardoso MC, Leonhardt H (2001) Identification and characterization of novel smoothelin isoforms in vascular smooth muscle. J Vasc Res 38:120–132

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lindroos M, Kupari M, Heikkila J, Tilvis R (1993) Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21:1220–1225

    Google Scholar 

  • Marron K, Yacoub MH, Polak JM, Sheppard MN, Fagan D, Whitehead BF, de Leval MR, Anderson RH, Wharton J (1996) Innervation of human atrioventricular and arterial valves. Circulation 94:368–375

    CAS  PubMed  Google Scholar 

  • Messier RHJ, Bass BL, Aly HM, Jones JL, Domkowski PW, Wallace RB, Hopkins RA (1994) Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res 57:1–21

    Article  PubMed  Google Scholar 

  • Messier RHJ, Bass BL, Domkowski PW, Hopkins RA (1999) Interstitial cellular and matrix restoration of cardiac valves after cryopreservation. J Thorac Cardiovasc Surg 118:36–49

    PubMed  Google Scholar 

  • Mohler ER (2000) Are atherosclerotic processes involved in aortic-valve calcification? Lancet 356:524–525

    Article  PubMed  Google Scholar 

  • Mohler ER, Adam LP, McClelland P, Graham L, Hathaway DR (1997) Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 17:547–552

    PubMed  Google Scholar 

  • Mohler ER, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH (1999) Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis 8:254–260

    PubMed  Google Scholar 

  • Mulholland DL, Gotlieb AI (1996) Cell biology of valvular interstitial cells. Can J Cardiol 12:231–236

    CAS  PubMed  Google Scholar 

  • Mulholland DL, Gotlieb AI (1997) Cardiac valve interstitial cells: regulator of valve structure and function. Cardiovasc Pathol 6:167–174

    Article  Google Scholar 

  • O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, Otto CM (1995) Osteopontin is expressed in human aortic valvular lesions. Circulation 92:2163–2168

    CAS  PubMed  Google Scholar 

  • O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM (1996) Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 16:523–532

    CAS  PubMed  Google Scholar 

  • O’Brien KD, Shavelle DM, Caulfield MT, McDonald TO, Olin-Lewis K, Otto CM, Probstfield JL (2002) Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 106:2224–2230

    Article  CAS  PubMed  Google Scholar 

  • Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90:844–853

    CAS  PubMed  Google Scholar 

  • Otto CM, Lind BK, Kitzman DW, Gersh BJ, Siscovick DS (1999) Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341:142–147

    CAS  PubMed  Google Scholar 

  • Palta S, Pai AM, Gill KS, Pai RG (2000) New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation 101:2497–2502

    CAS  PubMed  Google Scholar 

  • Quensel C, Kramer J, Cardoso MC, Leonhardt H (2002) Smoothelin contains a novel actin cytoskeleton localization sequence with similarity to troponin T. J Cell Biochem 85:403–409

    Article  CAS  PubMed  Google Scholar 

  • Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS (2001) Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis 10:371–374

    CAS  PubMed  Google Scholar 

  • Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC (2002) Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 105:2660–2665

    Article  CAS  PubMed  Google Scholar 

  • Russell HK (1972) A modification of Movat’s pentachrome stain. Arch Pathol 94:187–191

    PubMed  Google Scholar 

  • Sarphie TG (1982) Surface topography of mitral valve endothelium from diet-induced, hypercholesterolemic rabbits. Atherosclerosis 45:203–220

    CAS  PubMed  Google Scholar 

  • Sarphie TG (1985) Surface responses of aortic valve endothelia from diet-induced, hypercholesterolemic rabbits. Atherosclerosis 54:283–299

    CAS  PubMed  Google Scholar 

  • Sartore S, Franch R, Roelofs M, Chiavegato A (1999) Molecular and cellular phenotypes and their regulation in smooth muscle. Rev Physiol Biochem Pharmacol 134:235–320

    CAS  PubMed  Google Scholar 

  • Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Langer R, Vacanti JP, Mayer JEJ (1997) Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation 96: II–7

    CAS  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JEJ (2000) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102: III22–III29

    CAS  PubMed  Google Scholar 

  • Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:1150–1155

    Google Scholar 

  • Tamura K, Jones M, Yamada I, Ferrans VJ (2000) Wound healing in the mitral valve. J Heart Valve Dis 9:53–63

    CAS  PubMed  Google Scholar 

  • Taylor PM, Allen SP, Yacoub MH (2000) Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 9:150–158

    CAS  PubMed  Google Scholar 

  • Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35:113–118

    Article  CAS  PubMed  Google Scholar 

  • van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134:401–411

    PubMed  Google Scholar 

  • van der Loop FT, Gabbiani G, Kohnen G, Ramaekers FC, van Eys GJ (1997) Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler Thromb Vasc Biol 17:665–671

    PubMed  Google Scholar 

  • van Eys GJ, Voller MC, Timmer ED, Wehrens XH, Small JV, Schalken JA, Ramaekers FC, van der Loop FT (1997) Smoothelin expression characteristics: development of a smooth muscle cell in vitro system and identification of a vascular variant. Cell Struct Funct 22:65–72

    PubMed  Google Scholar 

  • Vesely I, Noseworthy R (1992) Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J Biomech 25:101–113

    CAS  PubMed  Google Scholar 

  • Wassenaar C, Bax WA, van Suylen RJ, Vuzevski VD, Bos E (1997) Effects of cryopreservation on contractile properties of porcine isolated aortic valve leaflets and aortic wall. J Thorac Cardiovasc Surg 113:165–172

    CAS  PubMed  Google Scholar 

  • Wehrens XH, Mies B, Gimona M, Ramaekers FC, van Eys GJ, Small JV (1997) Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform. FEBS Lett 405:315–320

    Article  CAS  PubMed  Google Scholar 

  • Weind KL, Ellis CG, Boughner DR (2000) The aortic valve blood supply. J Heart Valve Dis 9:1–7

    CAS  PubMed  Google Scholar 

  • Weind KL, Boughner DR, Rigutto L, Ellis CG (2001) Oxygen diffusion and consumption of aortic valve cusps. Am J Physiol Heart Circ Physiol 281:H2604–H2611

    CAS  PubMed  Google Scholar 

  • Wierzbicki A, Shetty C (1999) Aortic stenosis: an atherosclerotic disease? J Heart Valve Dis 8:416–423

    CAS  PubMed  Google Scholar 

  • Zahor Z, Czabanova V (1977) Experimental atherosclerosis of the heart valves in rats following a long-term atherogenic regimen. Atherosclerosis 27:49–57

    CAS  PubMed  Google Scholar 

  • Zalewski A, Shi Y (1997) Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 17:417–422

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. Cimini would like to acknowledge the scholarship support from the Heart and Stroke Foundation of Canada. The authors would like to thank A.M. Ferreira and J. Ronald for critical reading of the manuscript and technical assistance and advice, L. Aldington for cell culture assistance, J. Dunmore-Buyze and Dr. T. Tweedie for sample collection, and N. Bechard for her imaging expertise. The authors would also like to thank the Ralf Bros and Mt. Brydges abattoirs for porcine samples. This study was supported by the Heart and Stroke Foundation of Ontario grant number T3573/4707 and Canadian Institutes for Health Research grant number MOP57839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. Boughner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimini, M., Rogers, K.A. & Boughner, D.R. Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol 120, 307–317 (2003). https://doi.org/10.1007/s00418-003-0570-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0570-z

Keywords

Navigation