Skip to main content
Log in

The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells

Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Heterozygous mutations in the WFS1 gene are responsible for autosomal dominant low frequency hearing loss at the DFNA6/14 locus, while homozygous or compound heterozygous mutations underlie Wolfram syndrome. In this study we examine expression of wolframin, the WFS1-gene product, in mouse inner ear at different developmental stages using immunohistochemistry and in situ hybridization. Both techniques showed compatible results and indicated a clear expression in different cell types of the inner ear. Although there were observable developmental differences, no differences in staining pattern or gradients of expression were observed between the basal and apical parts of the cochlea. Double immunostaining with an endoplasmic reticulum marker confirmed that wolframin localizes to this organelle. A remarkable similarity was observed between cells expressing wolframin and the presence of canalicular reticulum, a specialized form of endoplasmic reticulum. The canalicular reticulum is believed to be involved in the transcellular movements of ions, an important process in the physiology of the inner ear. Although there is nothing currently known about the function of wolframin, our results suggest that it may play a role in inner ear ion homeostasis as maintained by the canalicular reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2a–c.
Fig. 3a–d.
Fig. 4a–c. Fig. 5a–c. Fig. 6.

References

  • Baron DA, Briggman JV, Spicer SS (1984) Tubulocisternal endoplasmic reticulum in human eccrine sweat glands. Lab Invest 51:233–243

    CAS  PubMed  Google Scholar 

  • Bespalova IN, Camp G van, Bom SJ, Brown DJ, Cryns K, DeWan AT, Erson AE, Flothmann K, Kunst HPM, Kurnool P, Sivakumaran TA, Cremers CWRJ, Leal SM, Burmeister M, Lesperance MM (2001) Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet 10:2501–2508

    CAS  PubMed  Google Scholar 

  • Chung JW, Schacht J (2002) ATP and nitric oxide modulate intracellular calcium in isolated pillar cells of the guinea pig cochlea. J Assoc Res Otolaryngol 2:399–407

    Google Scholar 

  • Cremers CW, Wijdeveld PG, Pinckers AJ (1977) Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). A review of 88 cases from the literature with personal observations on 3 new patients. Acta Paediatr Scand Suppl 1–16

  • Cryns K, Pfister M, Pennings RJ, Bom SJ, Flothmann K, Caethoven G, Kremer H, Schatteman I, Koln KA, Toth T, Kupka S, Blin N, Nurnberg P, Thiele H, Heyning PH van de, Reardon W, Stephens D, Cremers CW, Smith RJ, Camp G van (2002) Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations. Hum Genet 110:389–394

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CD, Weber PC, Spicer SS, Schulte BA (2000) Canalicular reticulum in vestibular hair cells. Hear Res 143:69–83

    Article  PubMed  Google Scholar 

  • Dulon D, Blanchet C, Laffon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys Res Commun 201:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Forge A (1982) A tubulo-cisternal endoplasmic reticulum system in the potassium transporting marginal cells of the stria vascularis and effects of the ototoxic diuretic ethacrynic acid. Cell Tissue Res 226:375–387

    CAS  PubMed  Google Scholar 

  • Harada Y, Sakai T, Tagashira N, Suzuki M (1987) Three-dimensional observation of the cochlea. Intracellular structure of the hair cell and the supporting cell. Acta Otolaryngol 103:458–463

    CAS  PubMed  Google Scholar 

  • Higashi K (1991) Otologic findings of DIDMOAD syndrome. Am J Otol 12:57–60

    CAS  PubMed  Google Scholar 

  • Ikeda K, Suzuki M, Furukawa M, Takasaka T (1995) Calcium mobilization and entry induced by extracellular ATP in the non-sensory epithelial cell of the cochlear lateral wall. Cell Calcium 18:89–99

    CAS  PubMed  Google Scholar 

  • Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  CAS  PubMed  Google Scholar 

  • Kennedy HJ, Meech RW (2002) Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 539:15–23

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Escamez JA, Schacht J (1995) Mechanically induced calcium increases in isolated vestibular hair cells of the guinea pig. Acta Otolaryngol 115:759–764

    CAS  PubMed  Google Scholar 

  • Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318

    Article  CAS  PubMed  Google Scholar 

  • Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-Induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca(2+) store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    CAS  PubMed  Google Scholar 

  • Michalak M, Milner RE, Burns K, Opas M (1992) Calreticulin. Biochem J 285:681–692

    CAS  PubMed  Google Scholar 

  • Mollgard K, Rostgaard J (1978) Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum. J Membr Biol 40(Spec No):71–89

    PubMed  Google Scholar 

  • Mollgard K, Rostgaard J (1981) The transcellular compartment of tubulocisternal endoplasmic reticulum, a common feature of transporting epithelial cells. In: Ussing HH, Bindslev N, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, pp 85–98

  • Nash PD, Opas M, Michalak M (1994) Calreticulin: not just another calcium-binding protein. Mol Cell Biochem 135:71–78

    CAS  PubMed  Google Scholar 

  • Qvortrup K, Rostgaard J (1990) Three-dimensional organization of a transcellular tubulocisternal endoplasmic reticulum in epithelial cells of Reissner's membrane in the guinea-pig. Cell Tissue Res 261:287–299

    CAS  PubMed  Google Scholar 

  • Rome C, Luo D, Dulon D (1999) Muscarinic receptor-mediated calcium signaling in spiral ganglion neurons of the mammalian cochlea. Brain Res 846:196–203

    CAS  PubMed  Google Scholar 

  • Rostgaard J, Moller O (1980) Localization of Na+, K+-ATPase to the inside of the basolateral cell membranes of epithelial cells of proximal and distal tubules in rabbit kidney. Cell Tissue Res 212:17–28

    CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1997) Golgi–canalicular reticulum system in ion transporting fibrocytes and outer sulcus epithelium of gerbil cochlea. Anat Rec 249:117–127

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Thomopoulos GN, Schulte BA (1998) Cytologic evidence for mechanisms of K+ transport and genesis of Hensen bodies and subsurface cisternae in outer hair cells. Anat Rec 251:97–113

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Thomopoulos GN, Schulte BA (1999) Novel membranous structures in apical and basal compartments of inner hair cells. J Comp Neurol 409:424–437

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Thomopoulos GN, Schulte BA (2000) Structural evidence for ion transport and tectorial membrane maintenance in the gerbil limbus. Hear Res 143:147–161

    Article  CAS  PubMed  Google Scholar 

  • Strom TM, Hortnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz KD, Meitinger T (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028

    CAS  PubMed  Google Scholar 

  • Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996a) ATP activates a cation conductance and Ca(2+)-dependent Cl- conductance in Hensen cells of guinea pig cochlea. Am J Physiol 271:C1817–C1827

    CAS  PubMed  Google Scholar 

  • Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996b) ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea pig cochlea. J Physiol 491:707–718

    CAS  PubMed  Google Scholar 

  • Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10:477–484

    CAS  PubMed  Google Scholar 

  • Van Camp G, Smith RJH (2002) Hereditary hearing loss homepage. http://dnalab-www.uia.ac.be/dnalab/hhh. Cited October 2002

  • Wolfram DJ, Wagener HP (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clin Proc 13:715–718

    Google Scholar 

  • Young TL, Ives E, Lynch E, Person R, Snook S, MacLaren L, Cator T, Griffin A, Fernandez B, Lee MK, King MC (2001) Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1. Hum Mol Genet 10:2509–2514

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bradley Schulte for helpful discussion regarding the canalicular reticulum. K.C. holds a predoctoral position with the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) and L.V.L. holds a research position with the Fund for Scientific Research Flanders (FWO). This study was supported by grant G.0277.01 from the FWO (G.V.C. and J.-P.T.) and grants from the University of Antwerp (G.V.C.) and NIDCD (RO1-DC03544, R.J.H.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Van Camp.

Additional information

K. Cryns and S. Thys contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cryns, K., Thys, S., Van Laer, L. et al. The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem Cell Biol 119, 247–256 (2003). https://doi.org/10.1007/s00418-003-0495-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0495-6

Keywords

Navigation