Skip to main content

Advertisement

Log in

Optical coherence tomography angiography findings in Williams-Beuren syndrome

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Williams-Beuren syndrome (WBS) is a rare genetic disease characterized by psychomotor delay, cardiovascular, musculoskeletal, and endocrine problems. Retinal involvement, which is not well characterized, has also been described. The purpose of this cross-sectional study is to describe the characteristics in optical coherence tomography (OCT) and OCT-angiography (OCTA) of patients with WBS.

Methods

We included patients with WBS confirmed by genetic analysis. The patients underwent OCT (30° × 25°, 61 B-scans) and OCTA (10° × 10° and 20° × 20°) examinations, all centered on the. Data on retinal thickness (total, inner and outer layers) and foveal morphology on OCT and vessel and perfusion density in OCTA (VD and PD, respectively) were collected. These data were compared with an age-matched control group.

Results

22 eyes of 22 patients with WBS (10 females, mean age 31.5 years) were included. Retinal thickness (and specifically inner retinal layers) in OCT was significantly reduced in all sectors (central, parafoveal, and perifoveal) compared to the control group (p < 0.001 in all sectors). Fovea in WBS eyes was broader and shallower than controls. The PD and VD in both 10 and 20 degrees of fields in OCTA was significantly reduced in patients with WBS, in all vascular plexa (all p < 0.001).

Conclusions

This study is the first to quantify and demonstrate retinal structural and microvascular alterations in patients with WBS. Further studies with longitudinal data will reveal the potential clinical relevance of these alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams JC, Barratt-Boyes BG, Lowe JB (1961) Supravalvular aortic stenosis. Circulation 24:1311–1318. https://doi.org/10.1161/01.cir.24.6.1311

    Article  CAS  PubMed  Google Scholar 

  2. Beuren AJ, Apitz J, Harmjanz D (1962) Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 26:1235–1240. https://doi.org/10.1161/01.cir.26.6.1235

    Article  CAS  PubMed  Google Scholar 

  3. Pober BR (2010) Williams-Beuren syndrome. N Engl J Med 362:239–252. https://doi.org/10.1056/NEJMra0903074

    Article  CAS  PubMed  Google Scholar 

  4. Kozel BA, Barak B, Kim CA et al (2021) Williams syndrome. Nat Rev Dis Primers 7:42. https://doi.org/10.1038/s41572-021-00276-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greenberg F, Lewis RA (1988) The Williams syndrome. Spectrum and significance of ocular features. Ophthalmology 95:1608–1612. https://doi.org/10.1016/s0161-6420(88)32959-3

    Article  CAS  PubMed  Google Scholar 

  6. Winter M, Pankau R, Amm M et al (1996) The spectrum of ocular features in the Williams-Beuren syndrome. Clin Genet 49:28–31. https://doi.org/10.1111/j.1399-0004.1996.tb04320.x

    Article  CAS  PubMed  Google Scholar 

  7. Huryn LA, Flaherty T, Nolen R, et al. (2022) Novel ophthalmic findings and deep phenotyping in Williams-Beuren syndrome. Br J Ophthalmol bjophthalmol-2022–321103. https://doi.org/10.1136/bjophthalmol-2022-321103

  8. Di Marino M, Cesareo M, Aloe G et al (2020) Retinal and Choroidal Vasculature in Patients with Marfan Syndrome. Transl Vis Sci Technol 9:5. https://doi.org/10.1167/tvst.9.9.5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen H, Ng KY, Li S et al (2022) Characteristics of the foveal microvasculature in children with marfan syndrome: An Optical Coherence Tomography Angiography Study. Retina 42:138–151. https://doi.org/10.1097/IAE.0000000000003272

    Article  CAS  PubMed  Google Scholar 

  10. Ghoraba HH, Moshfeghi DM (2023) Retinal arterial tortuosity in Ehlers-Danlos syndromes. Eye (Lond) 37:1936–1941. https://doi.org/10.1038/s41433-022-02278-x

    Article  PubMed  Google Scholar 

  11. Bedeschi MF, Bianchi V, Colli AM et al (2011) Clinical follow-up of young adults affected by Williams syndrome: experience of 45 Italian patients. Am J Med Genet A 155A:353–359. https://doi.org/10.1002/ajmg.a.33819

    Article  PubMed  Google Scholar 

  12. Zhang C, Tatham AJ, Weinreb RN et al (2014) Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology 121:2371–2379. https://doi.org/10.1016/j.ophtha.2014.06.047

    Article  PubMed  Google Scholar 

  13. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25. https://doi.org/10.1002/cne.903000103

    Article  CAS  PubMed  Google Scholar 

  14. Campbell JP, Zhang M, Hwang TS et al (2017) Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep 7:42201. https://doi.org/10.1038/srep42201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chanwimol K, Balasubramanian S, Nassisi M et al (2019) Retinal Vascular Changes During Pregnancy Detected With Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 60:2726–2732. https://doi.org/10.1167/iovs.19-26956

    Article  CAS  PubMed  Google Scholar 

  16. Castelo-Branco M, Mendes M, Sebastião AR et al (2007) Visual phenotype in Williams-Beuren syndrome challenges magnocellular theories explaining human neurodevelopmental visual cortical disorders. J Clin Invest 117:3720–3729. https://doi.org/10.1172/JCI32556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tick S, Rossant F, Ghorbel I et al (2011) Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 52:5105–5110. https://doi.org/10.1167/iovs.10-7005

    Article  PubMed  Google Scholar 

  18. Vajzovic L, Hendrickson AE, O’Connell RV et al (2012) Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol 154:779-789.e2. https://doi.org/10.1016/j.ajo.2012.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  19. McCafferty BK, Wilk MA, McAllister JT et al (2015) Clinical Insights Into Foveal Morphology in Albinism. J Pediatr Ophthalmol Strabismus 52:167–172. https://doi.org/10.3928/01913913-20150427-06

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fieß A, Pfisterer A, Gißler S et al (2022) Retinal thickness and foveal hypoplasia in adults born preterm with and without retinopathy of prematurity: The Gutenberg Prematurity Eye Study. Retina 42:1716–1728. https://doi.org/10.1097/IAE.0000000000003501

    Article  CAS  PubMed  Google Scholar 

  21. Lavia C, Bonnin S, Maule M et al (2019) Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina 39:247–258. https://doi.org/10.1097/IAE.0000000000002413

    Article  PubMed  Google Scholar 

  22. Lavia C, Mecê P, Nassisi M et al (2020) Retinal Capillary Plexus Pattern and Density from Fovea to Periphery Measured in Healthy Eyes with Swept-Source Optical Coherence Tomography Angiography. Sci Rep 10:1474. https://doi.org/10.1038/s41598-020-58359-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogaczewska M, Michalak S, Stopa M (2021) Macular vessel density differs in multiple sclerosis and neuromyelitis optica spectrum disorder: An optical coherence tomography angiography study. PLoS One 16:e0253417. https://doi.org/10.1371/journal.pone.0253417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansen C, Bojikian KD, Chu Z et al (2020) Macular microvascular parameters in the ganglion cell-inner plexiform layer derived by optical coherence tomography angiography: Vascular structure-central visual function analysis. PLoS One 15:e0240111. https://doi.org/10.1371/journal.pone.0240111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. López-Cuenca I, Salobrar-García E, Elvira-Hurtado L et al (2021) The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer’s Disease: A Review Study. Life (Basel) 11:712. https://doi.org/10.3390/life11070712

    Article  CAS  PubMed  Google Scholar 

  26. Hohberger B, Lucio M, Schlick S et al (2021) OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients. PLoS One 16:e0246469. https://doi.org/10.1371/journal.pone.0246469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pröschel C, Blouin MJ, Gutowski NJ et al (1995) Limk1 is predominantly expressed in neural tissues and phosphorylates serine, threonine and tyrosine residues in vitro. Oncogene 11:1271–1281

    PubMed  Google Scholar 

  28. Gray V, Karmiloff-Smith A, Funnell E, Tassabehji M (2006) In-depth analysis of spatial cognition in Williams syndrome: A critical assessment of the role of the LIMK1 gene. Neuropsychologia 44:679–685. https://doi.org/10.1016/j.neuropsychologia.2005.08.007

    Article  PubMed  Google Scholar 

  29. Hirota H, Matsuoka R, Chen X-N et al (2003) Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on chromosome 7q11.23. Genet Med 5:311–321. https://doi.org/10.1097/01.GIM.0000076975.10224.67

    Article  CAS  PubMed  Google Scholar 

  30. Edelmann L, Prosnitz A, Pardo S et al (2007) An atypical deletion of the Williams-Beuren syndrome interval implicates genes associated with defective visuospatial processing and autism. J Med Genet 44:136–143. https://doi.org/10.1136/jmg.2006.044537

    Article  CAS  PubMed  Google Scholar 

  31. Bayarsaihan D, Bitchevaia N, Enkhmandakh B et al (2003) Expression of BEN, a member of TFII-I family of transcription factors, during mouse pre- and postimplantation development. Gene Expr Patterns 3:579–589. https://doi.org/10.1016/s1567-133x(03)00118-2

    Article  CAS  PubMed  Google Scholar 

  32. Morris CA, Mervis CB, Hobart HH et al (2003) GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am J Med Genet A 123A:45–59. https://doi.org/10.1002/ajmg.a.20496

    Article  PubMed  Google Scholar 

  33. Chen K, Weiland JD (2014) Discovery of retinal elastin and its possible role in age-related macular degeneration. Ann Biomed Eng 42:678–684. https://doi.org/10.1007/s10439-013-0936-x

    Article  PubMed  Google Scholar 

  34. Boned-Murillo A, Albertos-Arranz H, Diaz-Barreda MD et al (2021) Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines 10:88. https://doi.org/10.3390/biomedicines10010088

    Article  PubMed  PubMed Central  Google Scholar 

  35. Remolí Sargues L, Monferrer Adsuara C, Castro Navarro V, et al. (2022) Swept-source optical coherence tomography angiography automatic analysis of microvascular changes secondary to systemic hypertension. Eur J Ophthalmol 11206721221146674. https://doi.org/10.1177/11206721221146674

  36. Sadun AA, Win PH, Ross-Cisneros FN et al (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232 discussion 232-235

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Carelli V, La Morgia C, Valentino ML et al (2009) Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta 1787:518–528. https://doi.org/10.1016/j.bbabio.2009.02.024

    Article  CAS  PubMed  Google Scholar 

  38. Kang EY-C, Liu P-K, Wen Y-T et al (2021) Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 10:1948. https://doi.org/10.3390/antiox10121948

    Article  CAS  PubMed  Google Scholar 

  39. Ferrari M, Stagi S (2021) Oxidative Stress in Down and Williams-Beuren Syndromes: An Overview. Molecules 26:3139. https://doi.org/10.3390/molecules26113139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been generated within the European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA) (EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01-2016/739516).

Funding

Partial financial support was received from the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Marco Nassisi, Claudia Mainetti, Andrea Sperti, Guido Galmozzi, Andrea Aretti, Gaia Leone, Valeria Nicotra, Federico Grilli and Berardo Rinaldi. Federica Natacci, Maria Francesca Bedeschi and Francesco Viola supervised the study. The first draft of the manuscript was written by Marco Nassisi and Claudia Mainetti and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marco Nassisi.

Ethics declarations

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study protocol was approved by the local ethics committee (Comitato Etico Milano Area 2, protocol n.1179 of the 29th of April 2022).

Informed consent

Informed consent was obtained from all individual participants or legal guardians after explanation of the study and its potential outcomes.

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassisi, M., Mainetti, C., Sperti, A. et al. Optical coherence tomography angiography findings in Williams-Beuren syndrome. Graefes Arch Clin Exp Ophthalmol 262, 1131–1140 (2024). https://doi.org/10.1007/s00417-023-06323-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06323-7

Keywords

Navigation