Skip to main content

Advertisement

Log in

Swept-source optical coherence tomography and ultrasound biomicroscopy study of anterior segment parameters in primary angle-closure glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the agreement between swept-source OCT (CASIA2) and UBM in primary angle-closure glaucoma.

Methods

Eighty eyes of 40 participants diagnosed with primary angle-closure glaucoma were examined. Parameters measured included angle opening distance (AOD), angle recess area (ARA), trabecular iris space area (TISA), trabecular iris angle (TIA), lens vault (LV), anterior chamber depth (ACD), and anterior chamber width (ACW). Angle images of nasal, temporal, superior, and inferior were acquired by the anterior segment mode of CASIA2 and UBM. One-way analysis of variance and paired t-test were used for statistical analysis, and the agreement was analyzed by internal correlation coefficient (ICC) and Bland–Altman method.

Results

One-way ANOVA pairwise comparison showed that CASIA2 or UBM had the narrowest superior chamber angle and the widest temporal chamber angle in patients with primary angle-closure glaucoma. The paired t-test showed that inter-device AOD, TIA, ARA, and TISA of superior chamber angle had significant differences (p < 0.001). There was no significant difference in the measured values of LV, ACD, and ACW (p > 0.05). The agreement of all parameters is good through the Bland–Altman method comparison. ICC result showed moderate agreement in other angle parameters except for superior ARA500 (0.739).

Conclusion

In the anterior chamber angle measurement process, we should pay more attention to the superior chamber angle covered by eyelids. Although the agreement is acceptable between CASIA2 and UBM, the measurements could not be considered interchangeable due to the tremendous statistical difference between the two devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acott T, Vranka J, Keller K, Raghunathan V, Kelley M (2021) Normal and glaucomatous outflow regulation. Prog Retin Eye Res 82:100897. https://doi.org/10.1016/j.preteyeres.2020.100897

    Article  PubMed  Google Scholar 

  2. Foster P, Johnson G (2001) Glaucoma in China: how big is the problem? Br J Ophthalmol 85:1277–1282. https://doi.org/10.1136/bjo.85.11.1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song P, Wang J, Bucan K, Theodoratou E, Rudan I, Chan K (2017) National and subnational prevalence and burden of glaucoma in China: a systematic analysis. J Glob Health 7:020705. https://doi.org/10.7189/jogh.07.020705

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tham Y, Li X, Wong T, Quigley H, Aung T, Cheng C (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

    Article  PubMed  Google Scholar 

  5. Potop V, Coviltir V, Schmitzer S, Dragosloveanu C, Ionescu C, Burcel M, Corbu M, Dăscălescu D (2021) Ultrasound biomicroscopy in glaucoma assessment. Rom J Ophthalmol 65:114–119. https://doi.org/10.22336/rjo.2021.24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tatham A, Medeiros F (2017) Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology 124:S57–S65. https://doi.org/10.1016/j.ophtha.2017.07.015

    Article  PubMed  Google Scholar 

  7. Zhou S, Wang C, Cai X, Huang D, Liu Y (2013) Optical coherence tomography and ultrasound biomicroscopy imaging of opaque corneas. Cornea 32:e25-30. https://doi.org/10.1097/ICO.0b013e318261eb2b

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chansangpetch S, Rojanapongpun P, Lin S (2018) Anterior segment imaging for angle closure. Am J Ophthalmol 188:xvi–xxix. https://doi.org/10.1016/j.ajo.2018.01.006

    Article  PubMed  Google Scholar 

  9. Shoji T, Kato N, Ishikawa S, Ibuki H, Yamada N, Kimura I, Shinoda K (2017) In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement. BMJ Open Ophthalmol 1:e000058. https://doi.org/10.1136/bmjophth-2016-000058

    Article  PubMed  PubMed Central  Google Scholar 

  10. Al Farhan H (2014) Agreement between Orbscan II, VuMAX UBM and Artemis-2 very-high frequency ultrasound scanner for measurement of anterior chamber depth. BMC Ophthalmol 14:20. https://doi.org/10.1186/1471-2415-14-20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li J, Drechsler J, Lin A, Widlus M, Qureshi A, Stoleru G, Saeedi O, Levin M, Kaleem M, Jaafar M, Madigan W, Alexander J (2021) Repeatability and reliability of quantified ultrasound biomicroscopy image analysis of the ciliary body at the pars plicata. Ultrasound Med Biol 47:1949–1956. https://doi.org/10.1016/j.ultrasmedbio.2021.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dembski M, Nowińska A, Ulfik-Dembska K, Wylęgała E (2021) Swept source optical coherence tomography analysis of the selected eye’s anterior segment parameters. J Clin Med 10. https://doi.org/10.3390/jcm10051094

  13. Fukuda S, Ueno Y, Fujita A, Mori H, Tasaki K, Murakami T, Beheregaray S, Oshika T (2020) Comparison of anterior segment and lens biometric measurements in patients with cataract. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 258: 137–146. https://doi.org/10.1007/s00417-019-04482-0

  14. Qureshi A, Chen H, Saeedi O, Kaleem M, Stoleru G, Margo J, Kalarn S, Alexander J (2019) Anterior segment ultrasound biomicroscopy image analysis using ImageJ software: intra-observer repeatability and inter-observer agreement. Int Ophthalmol 39:829–837. https://doi.org/10.1007/s10792-018-0882-6

    Article  PubMed  Google Scholar 

  15. Reinstein D, Archer T, Rowe E, Gobbe M, Vida R (2021) Distribution of pupil offset and angle kappa in a refractive surgery preoperative population of 750 myopic, emmetropic, and hyperopic eyes. J Refract Surg (Thorofare, NJ:1995) 37:49–58. https://doi.org/10.3928/1081597x-20201109-01

    Article  Google Scholar 

  16. Gao K, Li F, Li Y, Li X, Huang W, Chen S, Liu Y, Aung T, Zhang X (2018) Anterior choroidal thickness increased in primary open-angle glaucoma and primary angle-closure disease eyes evidenced by ultrasound biomicroscopy and SS-OCT. Invest Ophthalmol Vis Sci 59:1270–1277. https://doi.org/10.1167/iovs.17-23037

    Article  CAS  PubMed  Google Scholar 

  17. Lauwers N, Janssens K, Mertens M, Mathysen D, Lammens M, de Keizer R, De Groot V (2021) Anterior segment optical coherence tomography and ultrasound biomicroscopy for measuring thickness of corneal and bulbar conjunctival tumours. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-312337

    Article  PubMed  Google Scholar 

  18. Tabatabaei S, Soleimani M, Etesali H, Naderan M (2020) Accuracy of swept-source optical coherence tomography and ultrasound biomicroscopy for evaluation of posterior lens capsule in traumatic cataract. Am J Ophthalmol 216:55–58. https://doi.org/10.1016/j.ajo.2020.03.030

    Article  PubMed  Google Scholar 

  19. Zhu Y, Fang L, Zhong Y, Oatts J, Han Y, Lin S, Chen L, Zhou X, Su Y, Liu P, Liu X (2021) Clinical and ultrasound biomicroscopic characteristics of congenital fibrovascular pupillary membrane-induced secondary glaucoma. Front Med 8:763137. https://doi.org/10.3389/fmed.2021.763137

    Article  Google Scholar 

  20. Henzan I, Tomidokoro A, Uejo C, Sakai H, Sawaguchi S, Iwase A, Araie M (2011) Comparison of ultrasound biomicroscopic configurations among primary angle closure, its suspects, and nonoccludable angles: the Kumejima Study. Am J Ophthalmol 151:1065-1073.e1061. https://doi.org/10.1016/j.ajo.2010.11.030

    Article  PubMed  Google Scholar 

  21. Janssens R, van Rijn L, Eggink C, Jansonius N, Janssen S (2021) Ultrasound biomicroscopy of the anterior segment in patients with primary congenital glaucoma: a review of the literature. Acta Ophthalmol. https://doi.org/10.1111/aos.15082

    Article  PubMed  Google Scholar 

  22. Lu M, Wang X, Lei L, Deng Y, Yang T, Dai Y, Li Y, Gan X, Hu Y, Chen H, Li M, Su L, Yuan J, Chi W (2020) Quantitative analysis of anterior chamber inflammation using the novel CASIA2 optical coherence tomography. Am J Ophthalmol 216:59–68. https://doi.org/10.1016/j.ajo.2020.03.032

    Article  CAS  PubMed  Google Scholar 

  23. Zhang T, Zhou Y, Young C, Chen A, Jin G, Zheng D (2020) Comparison of a new swept-source anterior segment optical coherence tomography and a Scheimpflug camera for measurement of corneal curvature. Cornea 39:818–822. https://doi.org/10.1097/ico.0000000000002280

    Article  PubMed  Google Scholar 

  24. Chansangpetch S, Nguyen A, Mora M, Badr M, He M, Porco T, Lin S (2018) Agreement of anterior segment parameters obtained from swept-source Fourier-domain and time-domain anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 59:1554–1561. https://doi.org/10.1167/iovs.17-23574

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li X, Chang P, Li Z, Qian S, Zhu Z, Wang Q, Yun-E Z (2020) Agreement between anterior segment parameters obtained by a new ultrasound biomicroscopy and a swept-source fourier-domain anterior segment optical coherence tomography. Expert Rev Med Devices 17:1333–1340. https://doi.org/10.1080/17434440.2020.1848541

    Article  CAS  PubMed  Google Scholar 

  26. Cennamo G, Montorio D, Del Prete S, Del Prete A, Cennamo G (2018) Anterior-segment optical coherence tomography and scanning electron microscopy to evaluate corneal epithelial changes in patients undergoing glaucoma therapy. Cornea 37:1522–1526. https://doi.org/10.1097/ico.0000000000001752

    Article  PubMed  Google Scholar 

  27. Saito A, Kamiya K, Fujimura F, Takahashi M, Shoji N (2020) Comparison of angle-to-angle distance using three devices in normal eyes. Eye (Lond) 34:1116–1120. https://doi.org/10.1038/s41433-019-0653-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

X. Pan conceptualized the experiments. Q. Bu and D. Hu performed data analysis, visualization, and wrote the manuscript. Z. Li revised and edited the manuscript. H. Zhu, J. Jiang, Y. Su, and J. Wu provided technical assistance. All authors read and approved the final manuscript.

Funding

This work was supported by grants from Natural Science Foundation of Shandong Province (No. ZR2020MH172). Die Hu is partially supported by Qingdao Municipal Health Commission (2021-WJD221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Pan.

Ethics declarations

Ethics approval

The study was approved by the Ethics Committee of the Shandong Eye Institute, affiliated with Shandong First Medical University ([2022] No. 11).

Informed consent

This study involves human participants. All research procedures adhered to the tenets of the Declaration of Helsinki. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qianwen Bu and Die Hu are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6629 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Q., Hu, D., Zhu, H. et al. Swept-source optical coherence tomography and ultrasound biomicroscopy study of anterior segment parameters in primary angle-closure glaucoma. Graefes Arch Clin Exp Ophthalmol 261, 1651–1658 (2023). https://doi.org/10.1007/s00417-022-05970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05970-6

Keywords

Navigation