Skip to main content

Advertisement

Log in

Evaluation of retinal vessel quantity within individual retinal structural layers using optical coherence tomography angiography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate retinal vessel quantity within various retinal structural layers using optical coherence tomography angiography (OCTA).

Methods

In this IRB-approved study, 22 normal eyes (from 22 subjects) were imaged using the Spectralis OCT2, with a 15 × 15 degree OCTA scan centered on fovea and two additional 15 × 5 degree OCTA scans, displaced temporally and nasally by 15 degrees along the fovea-Bruch’s membrane opening (BMO) axis. Following projection artifact removal (PAR), vessel quantity (i.e., amount of flow signal) within each retinal nuclear and plexiform layer was assessed across the scan and was plotted as a vessel quantity profile over this fovea-BMO axis. Vessel quantity was correlated against the retinal layer thickness at the corresponding locations using the Spearman correlation.

Results

For the nerve fiber layer (NFL), the vessel quantity was highest nasally and declined towards the fovea and was near zero temporal to the fovea with or without PAR. For all other retinal layers, the retinal vessel quantities were greatest in the parafoveal retina, peaking approximately 5 degrees from the foveal center. Before PAR, the parafoveal vessel quantity was highest in the inner plexiform layer (IPL). Following PAR, the vessel quantity in the IPL decreased but was relatively unchanged in the other layers. The vessel quantity correlated moderately well with retinal layer thickness (r = 0.432 to 0.511; P < 0.05 among the various layers).

Conclusions

Retinal vessel quantity varies significantly among the various structural layers, with significant regional variability. Projection artifact can significantly impact retinal vessel quantity in the deeper layers, but the effect appears to be most pronounced in the IPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yannuzzi LA, Rohrer KT, Tindel LJ et al (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–617. https://doi.org/10.1016/S0161-6420(86)33697-2

    Article  CAS  PubMed  Google Scholar 

  2. Sarraf D, Rahimy E, Fawzi AA et al (2013) Paracentral acute middle maculopathy a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol 131:1275–1287. https://doi.org/10.1001/jamaophthalmol.2013.4056

    Article  PubMed  Google Scholar 

  3. Spaide RF, Fujimoto JG, Waheed NK et al (2018) Optical coherence tomography angiography. Prog Retin Eye Res:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

  4. Mastropasqua R, Toto L, Mastropasqua A et al (2017) Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int J Ophthalmol 10:1545–1551. https://doi.org/10.18240/ijo.2017.10.11

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schaal KB, Munk MR, Wyssmueller I et al (2017) Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina 1. https://doi.org/10.1097/IAE.0000000000001938

  6. Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choroicapillaris alterations in diabetic patients with and without retinopathy. Retina (Philadelphia, Pa) 37:11–21. https://doi.org/10.1097/IAE.0000000000001250

    Article  CAS  Google Scholar 

  7. Hirano T, Kakihara S, Toriyama Y et al (2017) Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol bjophthalmol-2017-311358. https://doi.org/10.1136/bjophthalmol-2017-311358

  8. Koulisis N, Kim AY, Chu Z et al (2017) Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One 12:1–14. https://doi.org/10.1371/journal.pone.0176404

    Article  CAS  Google Scholar 

  9. Falavarjani KG, Scott AW, Wang K et al (2016) Correlation of multimodal imaging in sickle cell retinopathy. Retina 36:S111–S117. https://doi.org/10.1097/IAE.0000000000001230

    Article  Google Scholar 

  10. Ghasemi Falavarjani K, Iafe NA, Hubschman JP et al (2017) Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Investig Ophthalmol Vis Sci 58:30–34. https://doi.org/10.1167/iovs.16-20579

    Article  CAS  Google Scholar 

  11. Adhi M, Bonini Filho MA, Louzada RN et al (2016) Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57:486–494. https://doi.org/10.1167/iovs.15-18907

    Article  Google Scholar 

  12. Dodo Y, Murakami T, Suzuma K et al (2017) Diabetic neuroglial changes in the superficial and deep nonperfused areas on optical coherence tomography angiography. Investig Ophthalmol Vis Sci 58:5870–5879. https://doi.org/10.1167/iovs.17-22156

    Article  CAS  Google Scholar 

  13. Miwa Y, Murakami T, Suzuma K et al (2016) Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci Rep 6:1–12. https://doi.org/10.1038/srep29064

    Article  CAS  Google Scholar 

  14. Wu S, Villegas VM, Kovach JL (2018) Case report optical coherence tomography angiography of combined central retinal artery and vein occlusion. Case Rep Ophthalmol Med 2018:1–5. https://doi.org/10.1155/2018/4342158

    Article  CAS  Google Scholar 

  15. Hirano T, Chanwimol K, Weichsel J et al (2018) Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis. Sci Rep 1–7. https://doi.org/10.1038/s41598-018-27536-5

  16. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 130–137

    Google Scholar 

  17. Ouyang Y, Walsh AC, Keane PA et al (2013) Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251:2311–2317. https://doi.org/10.1007/s00417-013-2308-5

    Article  PubMed  Google Scholar 

  18. Campbell JP, Zhang M, Hwang TS et al (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep:7. https://doi.org/10.1038/srep42201

  19. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180. https://doi.org/10.1097/IAE.0000000000000765

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Q, Zhang A, Lee CS et al (2017) Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. Ophthalmol Retina 1:124–136. https://doi.org/10.1016/j.oret.2016.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang M, Hwang TS, Campbell JP et al (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7:816. https://doi.org/10.1364/BOE.7.000816

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Sadda.

Ethics declarations

Conflict of interest

K. Chanwimol, none; T. Hirano, none; A. Bedolla, none; T. Tepelus, none; W. Taweebanjongsin, none; K.M. Marion, none; and S.R. Sadda, Allergan (C), Amgen (C), Carl Zeiss Meditec (F), Centervue (C), Roche/Genentech (C), Heidelberg Engineering (C), Iconic (C), 4DMT (C), Novartis (C), Optos (C), and Oxurion(C)

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of the University of California, Los Angeles, with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanwimol, K., Hirano, T., Bedolla, A. et al. Evaluation of retinal vessel quantity within individual retinal structural layers using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 258, 2111–2116 (2020). https://doi.org/10.1007/s00417-020-04776-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04776-8

Keywords

Navigation