Skip to main content

Advertisement

Log in

Quantitative analysis of retinal and choriocapillary vascular density of multiple evanescent white dot syndrome by optical coherence tomography angiography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe optical coherence tomography angiography (OCTA) and other multimodal imaging features of multiple evanescent white dot syndrome (MEWDS).

Methods

The retinal and choriocapillary vascular density of MEWDS patients were measured by OCTA (OptoVue Inc.) in the acute and recovery phases. And other multimodal imaging data were also retrospectively reviewed.

Results

Sixteen patients with a mean age of 26.5 ± 6.99 years were included. Three patients were complicated with choroidal neovascularization (CNV). The mean baseline logMAR BCVA of the affected eyes was 0.52 ± 0.36 (Snellen equivalent 20/50). OCTA revealed significant reductions in vascular densities of deep capillary plexus (45.72 ± 3.70%, P = 0.0007), and choriocapillaris (46.08 ± 3.22%, P < 0.0001) of the affected eyes compared with the contralateral eyes (50.23 ± 4.06% and 52.28 ± 4.19%, respectively) in the acute phase. During the recovery phases, vascular densities of deep capillary plexus (49.50 ± 3.15%, P < 0.0001) and choriocapillaris (53.67 ± 2.58%, P < 0.0001) increased significantly in the affected eyes while those of the superficial capillary plexus remained stable. SD-OCT revealed an increase of the subfoveal choroidal thickness and disruption of the outer retinal layer, including ellipsoid zone discontinuities and the accumulation of hyperreflective material, corresponding to the hypofluorescent spots and dots on ICGA, respectively. BCVA increased to normal values after recovery, together with restoration of the structural morphology and choroidal thickness on SD-OCT, except in eyes with CNV.

Conclusion

The inner retinal layer and choroid can be secondarily transiently compromised in MEWDS. MEWDS complicated with CNV is associated with worse visual outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jampol LM, Sieving PA, Pugh D, Fishman GA, Gilbert H (1984) Multiple evanescent white dot syndrome. I. Clinical findings. Arch Ophthalmol 102(5):671–674. https://doi.org/10.1001/archopht.1984.01040030527008

    Article  CAS  PubMed  Google Scholar 

  2. Ryan PT (2010) Multiple evanescent white dot syndrome: a review and case report. Clin Exp Optom 93(5):324–329. https://doi.org/10.1111/j.1444-0938.2010.00507.x

    Article  PubMed  Google Scholar 

  3. Feigl B, Haas A, El-Shabrawi Y (2002) Multifocal ERG in multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 240(8):615–621. https://doi.org/10.1007/s00417-002-0478-7

    Article  PubMed  Google Scholar 

  4. Pichi F, Srvivastava SK, Chexal S, Lembo A, Lima LH, Neri P, Saitta A, Chhablani J, Albini TA, Nucci P, Freund KB, Chung H, Lowder CY, Sarraf D (2016) En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: new insights into pathogenesis. Retina 36(Suppl 1):S178–S188. https://doi.org/10.1097/IAE.0000000000001255

    Article  PubMed  Google Scholar 

  5. Dell'omo R, Wong R, Marino M, Konstantopoulou K, Pavesio C (2010) Relationship between different fluorescein and indocyanine green angiography features in multiple evanescent white dot syndrome. Br J Ophthalmol 94(1):59–63. https://doi.org/10.1136/bjo.2009.163550

    Article  CAS  PubMed  Google Scholar 

  6. Fingler J, Schwartz D, Yang C, Fraser SE (2007) Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express 15(20):12636–12653. https://doi.org/10.1364/oe.15.012636

    Article  PubMed  Google Scholar 

  7. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  8. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, Schaal KB, Gregori G (2016) ZEISS angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:18–29. https://doi.org/10.1159/000442773

    Article  PubMed  Google Scholar 

  10. Coscas G, Lupidi M, Coscas F (2016) Heidelberg Spectralis optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:1–5. https://doi.org/10.1159/000442768

    Article  PubMed  Google Scholar 

  11. Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444. https://doi.org/10.1016/j.ophtha.2014.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim AY, Rodger DC, Shahidzadeh A, Chu Z, Koulisis N, Burkemper B, Jiang X, Pepple KL, Wang RK, Puliafito CA, Rao NA, Kashani AH (2016) Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol 171:101–112. https://doi.org/10.1016/j.ajo.2016.08.035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang CS, Hsieh MH, Su HI, Kuo YS (2019) Multiple evanescent white dot syndrome following acute Epstein-Barr virus infection. Ocul Immunol Inflamm 27(2):244–250. https://doi.org/10.1080/09273948.2017.1371763

    Article  PubMed  Google Scholar 

  14. Marsiglia M, Gallego-Pinazo R, Cunha de Souza E, Munk MR, Yu S, Mrejen S, Cunningham ET Jr, Lujan BJ, Goldberg NR, Albini TA, Gaudric A, Francais C, Rosen RB, Freund KB, Jampol LM, Yannuzzi LA (2016) Expanded clinical spectrum of multiple evanescent white dot syndrome with multimodal imaging. Retina 36(1):64–74. https://doi.org/10.1097/IAE.0000000000000685

    Article  PubMed  Google Scholar 

  15. Hashimoto Y, Saito W, Saito M, Hirooka K, Mori S, Noda K, Ishida S (2015) Decreased choroidal blood flow velocity in the pathogenesis of multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 253(9):1457–1464. https://doi.org/10.1007/s00417-014-2831-z

    Article  PubMed  Google Scholar 

  16. Herbort CP, Mantovani A, Papadia M (2012) Use of indocyanine green angiography in uveitis. Int Ophthalmol Clin 52(4):13–31. https://doi.org/10.1097/IIO.0b013e318265d48b

    Article  PubMed  Google Scholar 

  17. Li D, Kishi S (2009) Restored photoreceptor outer segment damage in multiple evanescent white dot syndrome. Ophthalmology 116(4):762–770. https://doi.org/10.1016/j.ophtha.2008.12.060

    Article  PubMed  Google Scholar 

  18. Fiore T, Iaccheri B, Cerquaglia A, Lupidi M, Torroni G, Fruttini D, Cagini C (2018) Outer retinal and choroidal evaluation in multiple evanescent white dot syndrome (MEWDS): an enhanced depth imaging optical coherence tomography study. Ocul Immunol Inflamm 26(3):428–434. https://doi.org/10.1080/09273948.2016.1231329

    Article  PubMed  Google Scholar 

  19. Aoyagi R, Hayashi T, Masai A, Mitooka K, Gekka T, Kozaki K, Tsuneoka H (2012) Subfoveal choroidal thickness in multiple evanescent white dot syndrome. Clin Exp Optom 95(2):212–217. https://doi.org/10.1111/j.1444-0938.2011.00668.x

    Article  PubMed  Google Scholar 

  20. Zicarelli F, Mantovani A, Preziosa C, Staurenghi G (2019) Multimodal Imaging of Multiple Evanescent White Dot Syndrome: A New Interpretation. Ocul Immunol Inflamm:1-7. https://doi.org/10.1080/09273948.2019.1635169

  21. Gaudric A, Mrejen S (2017) Why the Dots Are Black Only in the Late Phase of the Indocyanine Green Angiography in Multiple Evanescent White Dot Syndrome. Retin Cases Brief Rep 11 Suppl 1:S81-S85. https://doi.org/10.1097/ICB.0000000000000422

  22. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, Huang D (2017) Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep 7:42201. https://doi.org/10.1038/srep42201

  23. Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20 (6):799-821. https://doi.org/10.1016/s1350-9462(01)00012-x

  24. Wyhinny GJ, Jackson JL, Jampol LM, Caro NC (1990) Subretinal neovascularization following multiple evanescent white-dot syndrome. Arch Ophthalmol 108 (10):1384-1385. https://doi.org/10.1001/archopht.1990.01070120030013

  25. Oh KT, Christmas NJ, Russell SR (2001) Late recurrence and choroidal neovascularization in multiple evanescent white dot syndrome. Retina 21 (2):182-184. https://doi.org/10.1097/00006982-200104000-00017

  26. Battaglia Parodi M, Iacono P, Zucchiatti I, Bandello F (2018) Choroidal Neovascularization Associated with Multiple Evanescent White Dot Syndrome Treated with Intravitreal Ranibizumab. Ocul Immunol Inflamm 26 (4):608-611. https://doi.org/10.1080/09273948.2016.1247175

  27. Rouvas AA, Ladas ID, Papakostas TD, Moschos MM, Vergados I (2007) Intravitreal ranibizumab in a patient with choroidal neovascularization secondary to multiple evanescent white dot syndrome. Eur J Ophthalmol 17 (6):996-999. https://doi.org/10.1177/112067210701700623

  28. Muller VC, Storp JJ, Kerschke L, Nelis P, Eter N, Alnawaiseh M (2019) Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients. Acta Ophthalmol 97 (6):e844-e849. https://doi.org/10.1111/aos.14089

Download references

Acknowledgments

The authors would like to thank Ting Zhang of Fudan University, Shanghai, China, for the assistance with the statistical analyses in this study.

Funding

This study was funded by the National Natural Science Foundation of China (81700861, 81700862, 81770944, 81800846), the Shanghai Hospital Development Center (SHDC12016116), and the Science and Technology Commission of Shanghai Municipality (16411953700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of the Eye and ENT Hospital of Fudan University and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Guo, J., Liu, W. et al. Quantitative analysis of retinal and choriocapillary vascular density of multiple evanescent white dot syndrome by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 258, 1697–1707 (2020). https://doi.org/10.1007/s00417-020-04687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04687-8

Keywords

Navigation