Skip to main content

Advertisement

Log in

Optical coherence tomography angiography: a review of current and future clinical applications

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Optical coherence tomography angiography is a non-invasive imaging technique that now allows for simultaneous in vivo imaging of the morphology as well as the vasculature in the eye. In this review, we provide an update on the existing clinical applications of optical coherence tomography angiography technology from the anterior to posterior segment of the eye. We also discuss the limitations of optical coherence tomography angiography technology, as well as the caveats to the interpretation of images. As current optical coherence tomography angiography systems are optimized for the retina, most studies have focused on interpreting images from conditions such as age related macular degeneration and retinal vascular diseases. However, the interpretation of these optical coherence tomography angiography images should be taken in consideration with other multi-modal imaging to overcome the limitations of each technique. In addition, there are a growing variety of clinical applications for optical coherence tomography angiography imaging in optic nerve head evaluation for glaucoma and optic neuropathies. Further developments in anterior optical coherence tomography angiography have now allowed for evaluation of anterior segment pathology such as glaucoma, ocular surface diseases, corneal vascularisation, and abnormal iris vasculature. Future developments in software could allow for improved segmentation and image resolution with automated measurements and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19:071412. https://doi.org/10.1117/1.JBO.19.7.071412

    Article  PubMed  Google Scholar 

  2. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41:26–43. https://doi.org/10.1016/j.preteyeres.2014.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen CL, Wang RK (2017) Optical coherence tomography based angiography [invited]. Biomed Opt Express 8:1056–1082. https://doi.org/10.1364/BOE.8.001056

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT27–OCT36. https://doi.org/10.1167/iovs.15-19043

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang A, Zhang Q, Chen CL, Wang RK (2015) Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt 20:100901. https://doi.org/10.1117/1.JBO.20.10.100901

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keane PA, Sadda SR (2014) Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology 121:2489–2500. https://doi.org/10.1016/j.ophtha.2014.07.054

    Article  PubMed  Google Scholar 

  7. Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7:816–828. https://doi.org/10.1364/BOE.7.000816

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wylegala A, Teper S, Dobrowolski D, Wylegala E (2016) Optical coherence angiography: a review. Medicine (Baltimore) 95:e4907. https://doi.org/10.1097/MD.0000000000004907

    Article  Google Scholar 

  9. Tan ACS, Tan GS, Denniston AK, Keane PA, Ang M, Milea D, Chakravarthy U, Cheung CMG (2017) An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). https://doi.org/10.1038/eye.2017.181

  10. Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101:16–20. https://doi.org/10.1136/bjophthalmol-2016-309389

    Article  PubMed  Google Scholar 

  11. Ferrara D (2016) Image artifacts in optical coherence tomography angiography. Clin Exp Ophthalmol 44:367–368. https://doi.org/10.1111/ceo.12781

    Article  PubMed  Google Scholar 

  12. Spaide RF, Fujimoto JG, Waheed NK (2015) Image Artifacts in optical coherence tomography angiography. Retina 35:2163–2180. https://doi.org/10.1097/IAE.0000000000000765

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dolz-Marco R, Freund KB (2017) Directional changes in tissue reflectivity may influence flow detection on optical coherence tomography angiography. Retina. https://doi.org/10.1097/IAE.0000000000001656

  14. Soares M, Neves C, Marques IP, Pires I, Schwartz C, Costa MA, Santos T, Durbin M, Cunha-Vaz J (2017) Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol 101:62–68. https://doi.org/10.1136/bjophthalmol-2016-309424

    Article  PubMed  Google Scholar 

  15. Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, Freund KB (2016) Visual acuity is correlated with the area of the Foveal Avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123:2352–2367. https://doi.org/10.1016/j.ophtha.2016.07.008

    Article  PubMed  Google Scholar 

  16. Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI, Hsu J, Ho AC (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124:235–244. https://doi.org/10.1016/j.ophtha.2016.10.008

    Article  PubMed  Google Scholar 

  17. de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370. https://doi.org/10.1097/IAE.0000000000000882

    Article  PubMed  Google Scholar 

  18. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of Foveal Avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383. https://doi.org/10.1097/IAE.0000000000000849

    Article  PubMed  Google Scholar 

  19. Parravano M, De Geronimo D, Scarinci F, Querques L, Virgili G, Simonett JM, Varano M, Bandello F, Querques G (2017) Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol 179:90–96. https://doi.org/10.1016/j.ajo.2017.04.021

    Article  PubMed  Google Scholar 

  20. Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F (2016) Macular Telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30. https://doi.org/10.1016/j.ajo.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  21. Giuffre C, Carnevali A, Cicinelli MV, Querques L, Querques G, Bandello F (2017) Optical coherence tomography angiography of venous loops in diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina 48:518–520. https://doi.org/10.3928/23258160-20170601-13

    Article  PubMed  Google Scholar 

  22. Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35:2371–2376. https://doi.org/10.1097/IAE.0000000000000716

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Carlo TE, Bonini Filho MA, Baumal CR, Reichel E, Rogers A, Witkin AJ, Duker JS, Waheed NK (2016) Evaluation of Preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:115–119. https://doi.org/10.3928/23258160-20160126-03

    Article  PubMed  Google Scholar 

  24. Spaide RF, Marco RD, Yannuzzi LA (2017) Vascular distortion and dragging related to apparent tissue contraction in macular Telangiectasis type 2. Retina. https://doi.org/10.1097/IAE.0000000000001694

  25. Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source optical coherence tomography angiography of Neovascular macular Telangiectasia type 2. Retina 35:2285–2299. https://doi.org/10.1097/IAE.0000000000000840

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U, Vienna Eye Study C (2017) Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol 95:414–420. https://doi.org/10.1111/aos.13364

    Article  PubMed  Google Scholar 

  27. Inoue M, Jung JJ, Balaratnasingam C, Dansingani KK, Dhrami-Gavazi E, Suzuki M, de Carlo TE, Shahlaee A, Klufas MA, El Maftouhi A, Duker JS, Ho AC, Maftouhi MQ, Sarraf D, Freund KB, Group C-S (2016) A comparison between optical coherence tomography angiography and Fluorescein angiography for the imaging of type 1 neovascularization. Invest Ophthalmol Vis Sci 57:OCT314–OCT323. https://doi.org/10.1167/iovs.15-18900

    Article  CAS  PubMed  Google Scholar 

  28. Kuehlewein L, Bansal M, Lenis TL, Iafe NA, Sadda SR, Bonini Filho MA, De Carlo TE, Waheed NK, Duker JS, Sarraf D (2015) Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol 160(739–748):e732. https://doi.org/10.1016/j.ajo.2015.06.030

    Google Scholar 

  29. Tan AC, Dansingani KK, Yannuzzi LA, Sarraf D, Freund KB (2017) Type 3 neovascularization imaged with cross-sectional and en face optical coherence tomography angiography. Retina 37:234–246. https://doi.org/10.1097/IAE.0000000000001343

    Article  PubMed  Google Scholar 

  30. Cheung CM, Yanagi Y, Mohla A, Lee SY, Mathur R, Chan CM, Yeo I, Wong TY (2016) Characterization and differentiation of Polypoidal Choroidal vasculopathy using swept source optical coherence tomography angiography. Retina. https://doi.org/10.1097/IAE.0000000000001391

  31. Tanaka K, Mori R, Kawamura A, Nakashizuka H, Wakatsuki Y, Yuzawa M (2017) Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol 101:51–55. https://doi.org/10.1136/bjophthalmol-2016-309264

    Article  PubMed  Google Scholar 

  32. Srour M, Querques G, Souied EH (2016) Optical coherence tomography angiography of idiopathic Polypoidal Choroidal vasculopathy. Dev Ophthalmol 56:71–76. https://doi.org/10.1159/000442781

    Article  PubMed  Google Scholar 

  33. Querques L, Giuffre C, Corvi F, Zucchiatti I, Carnevali A, De Vitis LA, Querques G, Bandello F (2017) Optical coherence tomography angiography of myopic choroidal neovascularisation. Br J Ophthalmol 101:609–615. https://doi.org/10.1136/bjophthalmol-2016-309162

    Article  PubMed  Google Scholar 

  34. Bousquet E, Bonnin S, Mrejen S, Krivosic V, Tadayoni R, Gaudric A (2017) Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous Chorioretinopathy. Retina. https://doi.org/10.1097/IAE.0000000000001580

  35. Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101:616–622. https://doi.org/10.1136/bjophthalmol-2016-308806

    Article  PubMed  Google Scholar 

  36. Takayama K, Ito Y, Kaneko H, Kataoka K, Sugita T, Maruko R, Hattori K, Ra E, Haga F, Terasaki H (2017) Comparison of indocyanine green angiography and optical coherence tomographic angiography in polypoidal choroidal vasculopathy. Eye 31:45–52. https://doi.org/10.1038/eye.2016.232

    Article  CAS  PubMed  Google Scholar 

  37. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42. https://doi.org/10.1016/j.coph.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332. https://doi.org/10.1016/j.ophtha.2014.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D (2015) Optical coherence tomography angiography of the Peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–1052. https://doi.org/10.1001/jamaophthalmol.2015.2225

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123:2498–2508. https://doi.org/10.1016/j.ophtha.2016.08.041

    Article  PubMed  PubMed Central  Google Scholar 

  41. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V (2017) Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 12:e0170476. https://doi.org/10.1371/journal.pone.0170476PONE-D-16-21744

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ang M, Sng C, Milea D (2016) Optical coherence tomography angiography in dural carotid-cavernous sinus fistula. BMC Ophthalmol 16:93. https://doi.org/10.1186/s12886-016-0278-110.1186/s12886-016-0278-1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sharma S, Ang M, Najjar RP, Sng C, Cheung CY, Rukmini AV, Schmetterer L, Milea D (2017) Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2016-309245

  44. Ghasemi Falavarjani K, Tian JJ, Akil H, Garcia GA, Sadda SR, Sadun AA (2016) Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy. Retina 36(Suppl 1):S168–S177. https://doi.org/10.1097/IAE.0000000000001259

    Article  PubMed  Google Scholar 

  45. Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, Hornegger J, Fujimoto JG, Wu Q, Huang D (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 98:1368–1373. https://doi.org/10.1136/bjophthalmol-2013-304547

    Article  PubMed  PubMed Central  Google Scholar 

  46. Higashiyama T, Nishida Y, Ohji M (2017) Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One 12:e0172168. https://doi.org/10.1371/journal.pone.0172168

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ang M, Cai Y, Shahipasand S, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2015) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2015-307338

  48. Ang M, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2015) Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 122:1740–1747. https://doi.org/10.1016/j.ophtha.2015.05.017

    Article  PubMed  Google Scholar 

  49. Ang M, Cai Y, Tan AC (2016) Swept source optical coherence tomography angiography for contact lens-related corneal vascularization. J Ophthalmol 2016:9685297. https://doi.org/10.1155/2016/9685297

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ang M, Devarajan K, Das S, Stanzel T, Tan A, Girard M, Schmeterer L, Mehta J (2017) Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2017-311072

  51. Ang M, Cai Y, MacPhee B, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Larkin DF, Wilkins MR (2016) Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2015-307706

  52. Ang M, Cai Y, Shahipasand S, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2016) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol 100:616–621. https://doi.org/10.1136/bjophthalmol-2015-307338

    Article  PubMed  Google Scholar 

  53. Girard MJ, Ang M, Chung CW, Farook M, Strouthidis N, Mehta JS, Mari JM (2015) Enhancement of corneal visibility in optical coherence tomography images using corneal adaptive compensation. Transl Vis Sci Technol 4:3. https://doi.org/10.1167/tvst.4.3.3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chung CW, Ang M, Farook M, Strouthidis NG, Mehta JS, Mari JM, Girard MJ (2016) Enhancement of corneal visibility in optical coherence tomography images with corneal Opacification. Transl Vis Sci Technol 5:3. https://doi.org/10.1167/tvst.5.5.3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cai Y, Alio Del Barrio JL, Wilkins MR, Ang M (2017) Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 255:135–139. https://doi.org/10.1007/s00417-016-3505-9

    Article  PubMed  Google Scholar 

  56. Spiteri N, Romano V, Zheng Y, Yadav S, Dwivedi R, Chen J, Ahmad S, Willoughby CE, Kaye SB (2015) Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization. Ophthalmology 122:1079–1084. https://doi.org/10.1016/j.ophtha.2015.02.012

    Article  PubMed  Google Scholar 

  57. Guex-Crosier Y, Durig J (2003) Anterior segment indocyanine green angiography in anterior scleritis and episcleritis. Ophthalmology 110:1756–1763. https://doi.org/10.1016/S0161-6420(03)00567-0

    Article  PubMed  Google Scholar 

  58. Watson PG (1987) Anterior segment fluorescein angiography in the surgery of immunologically induced corneal and scleral destructive disorders. Ophthalmology 94:1452–1464

    Article  CAS  PubMed  Google Scholar 

  59. Cole ED, Ferrara D, Novais EA, Louzada RN, Waheed NK (2016) Clinical trial endpoints for optical coherence tomography angiography in Neovascular age-related macular degeneration. Retina 36(Suppl 1):S83–S92. https://doi.org/10.1097/IAE.0000000000001338

    Article  PubMed  Google Scholar 

  60. Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262. https://doi.org/10.1001/jamaophthalmol.2016.5327

    Article  PubMed  Google Scholar 

  61. Ploner SB, Moult EM, Choi W, Waheed NK, Lee B, Novais EA, Cole ED, Potsaid B, Husvogt L, Schottenhamml J, Maier A, Rosenfeld PJ, Duker JS, Hornegger J, Fujimoto JG (2016) TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: visualizing blood flow speeds in ocular pathology using variable Interscan time analysis. Retina 36(Suppl 1):S118–S126. https://doi.org/10.1097/IAE.0000000000001328

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Ang.

Ethics declarations

Conflict of interest

Dr. Gemmy Cheung serves on the speaker bureaus for Topcon and Zeiss. Dr. Pearse Keane has received speaker fees from Heidelberg Engineering, Topcon, Zeiss, Haag-Streit, Allergan, Novartis, and Bayer. He has served on advisory boards for Novartis and Bayer, and is an external consultant for DeepMind and Optos. Dr. Marcus Ang is a speaker for Zeiss, Nidek, Allergan, Santen and Johnson & Johnson Vision.

Ethical approval

For this type of study formal consent is not required.

Electronic supplementary material

Supplementary Fig. 1

Wide-field optical coherence tomography angiography images of a case of ischemic branch retinal vein occlusion showed areas of flow signal voids superior temporal to the macula corresponding to areas of ischemia. The image was obtained with full-retina segmentation and a montage of multiple smaller-field en face optical coherence tomography angiography images to create a wide-field image without sacrificing resolution and detail. The foveal avascular zone in this case was not enlarged and did not show any macular ischemia. (GIF 235 kb)

High resolution image (TIFF 1365 kb)

Supplementary Fig. 2

Cross-sectional (bottom left) and en face optical coherence tomography (top left) of an eye with macular telangiectasia type 2 showing the presence of intra-retina cystic changes. En face (top right) and cross-sectional optical coherence tomography angiography (bottom right) showing stellate arrangement of perifoveal telangectatic vessels temporal to the fovea that may be due to contraction of the tissue due to degenerative changes. (GIF 421 kb)

High resolution image (TIFF 19886 kb)

Supplementary Fig. 3

Indocyanine green angiography (ICGA) (top left), structural optical coherence tomography (OCT) image (bottom left), en face (top right) and cross-sectional OCT angiography (OCTA) images of eyes with polypoidal choroidal vasculopathy. Polyps (yellow circle) showing hyperreflectivity within a peaked pigment epithelial detachment (PED) with a corresponding focal abnormal flow signal seen on cross-sectional OCTA, on ICGA the polyps show extensive hypercyanescence but have only the patchy corresponding high flow signals on en face OCTA. The adjacent branching vascular network (blue arrows) is seen as a shallow, irregular PED with abnormal flow signal on cross-sectional OCTA and a corresponding high flow network of vessels seen on en face OCTA similar to the appearance on ICGA. (GIF 238 kb)

High resolution image (TIFF 11111 kb)

Supplementary Fig. 4

Optical coherence tomography angiography (OCTA) images of secondary causes of neovascularization (NV). Left column: Type 1 NV related to chronic central serous chorioretinopathy, seen on cross-sectional OCTA (bottom row) as flow signal within a shallow irregular pigment epithelial detachment, with a thick choroid, and corresponding abnormal flow signal seen on en face OCTA (top row) with projection artifact removed, and imaged on a depth color encoded en face OCTA image with the NV seen in blue (middle row). Middle column: Myopic NV seen as an abnormal flow signal on cross-sectional OCTA (bottom row), with a corresponding abnormal flow signal on en face OCTA (top row) with the projection artifact removed and depth color encoded en face OCTA with the NV appearing blue-green. Right column: Type 2 NV secondary to inflammatory diseases seen as abnormal flow signal in areas of subretinal hyperreflective material on cross-sectional OCTA (bottom row), and a corresponding flow signal on a 6 × 6 mm en face OCTA image (top row) showing a larger imaged area with less detail while a magnified view of the NV on a 3x3 mm en face OCTA image (middle row) showed greater detail of the NV. (GIF 1127 kb)

High resolution image (TIFF 31583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, M., Tan, A.C.S., Cheung, C.M.G. et al. Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch Clin Exp Ophthalmol 256, 237–245 (2018). https://doi.org/10.1007/s00417-017-3896-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3896-2

Keywords

Navigation