Skip to main content

Advertisement

Log in

Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate quantitatively the choroidal vascularity in polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (AMD) patients compared to healthy controls.

Methods

All eyes underwent swept source optical coherence tomography (OCT), and choroidal images were binarized into blood vessels lumen and stroma. The choroidal vascular index (CVI) was defined as the ratio of luminal area (LA) over total choroidal area of the subfoveal region with a width of 1500 μm.

Results

The study included 73 patients with neovascular AMD or PCV with mean ± standard deviation (SD) age of 71.8 ± 9.3 years, which was older than the mean age of 65.1 ± 10.8 years of 72 healthy eyes from control group (p < 0.01). The 44 PCV eyes had significantly higher mean SFCT of 214.23 ± 95.21 μm than neovascular AMD eyes (172.74 ± 96.48 μm, p = 0.03) and greater luminal area (0.23 ± 0.09 mm2 vs. 0.19 ± 0.08 mm2, p = 0.05). After adjusting for age, axial length, and gender in multivariate regression analysis, the SFCT of PCV and neovascular AMD eyes were not significantly different from healthy eyes (195.55 ± 93.11 μm), but the CVI of both PCV (64.94 ± 5.43%, p = 0.01) and neovascular AMD (62.54 ± 5.57%, p = <0.01) were significantly lower than control (68.53 ± 5.91%).

Conclusion

Despite physiological changes of choroidal vasculature due to aging, the choroidal morphology is different in PCV, neovascular AMD and healthy eyes, which has implication on disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lim LS, Cheung CM, Wong TY (2013) Asian age-related macular degeneration: current concepts and gaps in knowledge. Asia Pac J Ophthalmol (Phila) 2(1):32–41. doi:10.1097/APO.0b013e31827ff5bc

    Article  Google Scholar 

  2. Wong CW, Yanagi Y, Lee WK, Ogura Y, Yeo I, Wong TY, Cheung CM (2016) Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retin Eye Res 53:107–139. doi:10.1016/j.preteyeres.2016.04.002

    Article  PubMed  Google Scholar 

  3. Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, Wong TY, Aung T (2010) Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 29(1):19–29. doi:10.1016/j.preteyeres.2009.10.001

    Article  PubMed  Google Scholar 

  4. Ozkaya A, Alagoz C, Garip R, Alkin Z, Perente I, Yazici AT, Taskapili M (2016) The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. Eye (London). doi:10.1038/eye.2016.71

    Google Scholar 

  5. Ma L, Li Z, Liu K, Rong SS, Brelen ME, Young AL, Kumaramanickavel G, Pang CP, Chen H, Chen LJ (2015) Association of genetic variants with polypoidal choroidal vasculopathy: a systematic review and updated meta-analysis. Ophthalmology 122(9):1854–1865. doi:10.1016/j.ophtha.2015.05.012

    Article  PubMed  Google Scholar 

  6. Cho M, Barbazetto IA, Freund KB (2009) Refractory neovascular age-related macular degeneration secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol 148(1):70–78 e71. doi:10.1016/j.ajo.2009.02.012

  7. Cheung CM, Yang E, Lee WK, Lee GK, Mathur R, Cheng J, Wong D, Wong TY, Lai TY (2015) The natural history of polypoidal choroidal vasculopathy: a multi-center series of untreated Asian patients. Graefes Arch Clin Exp Ophthalmol 253(12):2075–2085. doi:10.1007/s00417-015-2933-2

    Article  PubMed  Google Scholar 

  8. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S (2011) Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 249(8):1123–1128. doi:10.1007/s00417-011-1620-1

    Article  PubMed  Google Scholar 

  9. Yang LH, Jonas JB, Wei WB (2013) Optical coherence tomographic enhanced depth imaging of polypoidal choroidal vasculopathy. Retina 33(8):1584–1589. doi:10.1097/IAE.0b013e318285cbb3

    Article  PubMed  Google Scholar 

  10. Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845. doi:10.1016/j.ophtha.2010.09.012

    Article  PubMed  Google Scholar 

  11. Coscas F, Puche N, Coscas G, Srour M, Francais C, Glacet-Bernard A, Querques G, Souied EH (2014) Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci 55(1):64–69. doi:10.1167/iovs.13-12931

    Article  PubMed  Google Scholar 

  12. Manjunath V, Goren J, Fujimoto JG, Duker JS (2011) Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol 152(4):663–668. doi:10.1016/j.ajo.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wood A, Binns A, Margrain T, Drexler W, Povazay B, Esmaeelpour M, Sheen N (2011) Retinal and choroidal thickness in early age-related macular degeneration. Am J Ophthalmol 152(6):1030–1038 e1032. doi:10.1016/j.ajo.2011.05.021

  14. Kim SW, Oh J, Kwon SS, Yoo J, Huh K (2011) Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 31(9):1904–1911. doi:10.1097/IAE.0b013e31821801c5

    Article  PubMed  Google Scholar 

  15. Jonas JB, Forster TM, Steinmetz P, Schlichtenbrede FC, Harder BC (2014) Choroidal thickness in age-related macular degeneration. Retina 34(6):1149–1155. doi:10.1097/IAE.0000000000000035

    Article  PubMed  Google Scholar 

  16. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168. doi:10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  17. Tan KA, Laude A, Yip V, Loo E, Wong EP, Agrawal R (2016) Choroidal vascularity index—a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol. doi:10.1111/aos.13044

    PubMed Central  Google Scholar 

  18. Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C (2016) Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11(1), e0146344. doi:10.1371/journal.pone.0146344

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A (2016) Choroidal vascularity index in central serous chorioretinopathy. Retina. doi:10.1097/IAE.0000000000001040

    Google Scholar 

  20. Japanese Study Group of Polypoidal Choroidal Vasculopathy (2005) Criteria for diagnosis of polypoidal choroidal vasculopathy. Nippon Ganka Gakkai Zasshi 109(7):417–427

    Google Scholar 

  21. Koh AH, Expert PCVP, Chen LJ, Chen SJ, Chen Y, Giridhar A, Iida T, Kim H, Yuk Yau Lai T, Lee WK, Li X, Han Lim T, Ruamviboonsuk P, Sharma T, Tang S, Yuzawa M (2013) Polypoidal choroidal vasculopathy: evidence-based guidelines for clinical diagnosis and treatment. Retina 33(4):686–716. doi:10.1097/IAE.0b013e3182852446

    Article  PubMed  Google Scholar 

  22. Niblack W (1986) An introduction to digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  23. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY (2016) Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep 6:21090. doi:10.1038/srep21090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rishi P, Rishi E, Mathur G, Raval V (2013) Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye (London) 27(9):1038–1043. doi:10.1038/eye.2013.106

    Article  CAS  Google Scholar 

  25. Ting DS, Ng WY, Ng SR, Tan SP, Yeo IY, Mathur R, Chan CM, Tan AC, Tan GS, Wong TY, Cheung CM (2016) Choroidal thickness changes in age-related macular degeneration and polypoidal choroidal vasculopathy: a 12-month prospective study. Am J Ophthalmol 164:128–136 e121. doi:10.1016/j.ajo.2015.12.024

  26. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, Fujimoto JG, Duker JS (2013) Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120(9):1901–1908. doi:10.1016/j.ophtha.2013.01.066

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, Chen CX, Xu J, Wang YX, Zhou JQ, You QS (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120(1):175–180. doi:10.1016/j.ophtha.2012.07.048

    Article  PubMed  Google Scholar 

  28. Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147(5):801–810. doi:10.1016/j.ajo.2008.12.010

    Article  PubMed  Google Scholar 

  29. Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155. doi:10.1016/j.preteyeres.2015.10.002

    Article  PubMed  Google Scholar 

  30. Barteselli G, Chhablani J, El-Emam S, Wang H, Chuang J, Kozak I, Cheng L, Bartsch DU, Freeman WR (2012) Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119(12):2572–2578. doi:10.1016/j.ophtha.2012.06.065

    Article  PubMed  PubMed Central  Google Scholar 

  31. McLeod DS, Lutty GA (1994) High-resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci 35(11):3799–3811

    CAS  PubMed  Google Scholar 

  32. Adhi M, Ferrara D, Mullins RF, Baumal CR, Mohler KJ, Kraus MF, Liu J, Badaro E, Alasil T, Hornegger J, Fujimoto JG, Duker JS, Waheed NK (2015) Characterization of choroidal layers in normal aging eyes using enface swept-source optical coherence tomography. PLoS ONE 10(7), e0133080. doi:10.1371/journal.pone.0133080

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wei X, Ting DS, Ng WY, Khandelwal N, Agrawal R, Cheung CM (2016) Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina. doi:10.1097/IAE.0000000000001312

    Google Scholar 

  34. McLeod DS, Taomoto M, Otsuji T, Green WR, Sunness JS, Lutty GA (2002) Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 43(6):1986–1993

    PubMed  Google Scholar 

  35. Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52(3):1606–1612. doi:10.1167/iovs.10-6476

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seddon JM, McLeod DS, Bhutto IA, Villalonga MB, Silver RE, Wenick AS, Edwards MM, Lutty GA (2016) Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration. JAMA Ophthalmol. doi:10.1001/jamaophthalmol.2016.3519

    PubMed  Google Scholar 

  37. Metelitsina TI, Grunwald JE, DuPont JC, Ying GS, Brucker AJ, Dunaief JL (2008) Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Invest Ophthalmol Vis Sci 49(1):358–363. doi:10.1167/iovs.07-0526

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36(3):499–516. doi:10.1097/IAE.0000000000000742

    Article  PubMed  Google Scholar 

  39. Sayanagi K, Gomi F, Akiba M, Sawa M, Hara C, Nishida K (2015) En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy. Br J Ophthalmol 99(1):29–35. doi:10.1136/bjophthalmol-2013-304658

    Article  PubMed  Google Scholar 

  40. Semoun O, Coscas F, Coscas G, Lalloum F, Srour M, Souied EH (2015) En face enhanced depth imaging optical coherence tomography of polypoidal choroidal vasculopathy. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307494

    PubMed  Google Scholar 

  41. Balaratnasingam C, Lee WK, Koizumi H, Dansingani K, Inoue M, Freund KB (2016) Polypoidal choroidal vasculopathy: a distinct disease or manifestation of many? Retina 36(1):1–8. doi:10.1097/IAE.0000000000000774

    Article  PubMed  Google Scholar 

  42. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, Kraus MF, Baumal C, Hornegger J, Fujimoto JG, Duker JS (2014) En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121(3):719–726. doi:10.1016/j.ophtha.2013.10.014

    Article  PubMed  Google Scholar 

  43. Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33(8):1659–1672. doi:10.1097/IAE.0b013e3182953df4

    Article  PubMed  Google Scholar 

  44. Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35(1):1–9. doi:10.1097/IAE.0000000000000331

    Article  CAS  PubMed  Google Scholar 

  45. Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3(4):111–115

    PubMed  PubMed Central  Google Scholar 

  46. Dansingani KK, Perlee LT, Hamon S, Lee M, Shah VP, Spaide RF, Sorenson J, Klancnik JM Jr, Yannuzzi LA, Barbazetto IA, Cooney MJ, Engelbert M, Chen C, Hewitt AW, Freund KB (2016) Risk alleles associated with neovascularization in a pachychoroid phenotype. Ophthalmology. doi:10.1016/j.ophtha.2016.06.060

    Google Scholar 

  47. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, Okada AA, Iida T (2016) Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology 123(3):617–624. doi:10.1016/j.ophtha.2015.10.039

    Article  PubMed  Google Scholar 

  48. Kim YT, Kang SW, Chung SE, Kong MG, Kim JH (2012) Development of polypoidal choroidal vasculopathy in unaffected fellow eyes. Br J Ophthalmol 96(9):1217–1221. doi:10.1136/bjophthalmol-2012-301644

    Article  PubMed  Google Scholar 

  49. Duan L, Hong YJ, Yasuno Y (2013) Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography. Opt Express 21(13):15787–15808. doi:10.1364/OE.21.015787

    Article  PubMed  Google Scholar 

  50. Seidel G, Hausberger S, Herzog SA, Palkovits S, Poschl EM, Wackernagel W, Weger M (2015) Circadian macular volume changes in the healthy human choroid. Am J Ophthalmol 159(2):365–371 e362. doi:10.1016/j.ajo.2014.11.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Siu-Chun Ng.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Meeting presentation

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakthavatsalam, M., Ng, D.SC., Lai, F.HP. et al. Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images. Graefes Arch Clin Exp Ophthalmol 255, 935–943 (2017). https://doi.org/10.1007/s00417-017-3591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3591-3

Keywords

Navigation