Skip to main content

Advertisement

Log in

Intraretinal changes in the presence of epiretinal traction

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To determine the correlation between the area of morphological changes on the macular surface, the depth of intraretinal changes and the best-corrected visual acuity (BCVA) in patients with idiopathic epiretinal membrane.

Methods

In this prospective cross-sectional study, 38 patients underwent BCVA testing with a Snellen eye chart. The depth of traction, photoreceptor outer segment layer (PROS) thickness, central macular thickness (CMT) and presence of intraretinal cysts were measured using the Avanti RTVue XR and 3D Widefield Enface OCT instruments. Enface sections were performed at the inner limiting membrane (ILM) line level (ILM offset). Patients were categorized into two groups: in group 1 (n = 21), the depth of traction was within 90 μm from the ILM, and in group 2 (n = 17) it was beyond 90 μm from the ILM. The main outcome measure was the correlation between area of epiretinal traction and BCVA according to the depth of traction.

Results

In group 1, the depth of traction was 55.15 ± 14.28 μm, the area of traction was 38.95 ± 13.63 mm2, PROS thickness was 51.20 ± 7.23 μm, and CMT was 362.65 ± 41.08 μm. In group 2, the depth of traction was 112.24 ± 10.89 μm, the area of traction was 25.18 ± 4.07 mm2, PROS thickness was 50.24 ± 9.01 μm, and mean CMT was 534.29 ± 126.81 μm. Statistically significant differences in depth of traction, area of traction and CMT were found between the two groups (P < 0.001). The relationship between structure and function between the area of traction and BCVA was better explained in group 2 (r = 0.814, P < 0.001).

Conclusions

We found that intraretinal changes were induced by the ERM, and varied according to the depth of traction measured with en face analysis. In the case of traction deeper than 90 μm, we found a significant correlation between the inner area of the epiretinal traction and BCVA. We believe that retinal stress induced by epiretinal traction is better characterized by combining information provided by sagittal and transverse OCT scans, thus defining its prognostic significance in ERM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gass JDM (1996) Macular dysfucntions caused by vitreous and vitreretinal interface abnormalities. Stereoscopic atlas of macular diseases. 4th ed. St. Louis, MO: Mosby 938-951.

  2. Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 104(6):1033–1040

    Article  CAS  PubMed  Google Scholar 

  3. Aung KZ, Makeyeva G, Adams MK et al (2013) The prevalence and risk factors of epiretinal membranes: the Melbourne Collaborative Cohort Study. Retina 33(5):1026–1034

    Article  PubMed  Google Scholar 

  4. Duan XR, Liang YB, Friedman DS et al (2009) Prevalence and associations of epiretinal membranes in a rural Chinese adult population: the Handan Eye Study. Invest Ophthalmol Vis Sci 50(5):2018–2023

    Article  PubMed  Google Scholar 

  5. Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P (2003) Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology 110(1):34–40

    Article  PubMed  Google Scholar 

  6. Fraser-Bell S, Ying-Lai M, Klein R, Varma R (2004) Prevalence and associations of epiretinal membranes in latinos: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 45(6):1732–1736

    Article  PubMed  Google Scholar 

  7. Kawasaki R, Wang JJ, Aung T et al (2008) Prevalence of age-related macular degeneration in a Malay population: the Singapore Malay Eye Study. Ophthalmology 115(10):1735–1741

    Article  PubMed  Google Scholar 

  8. Kawasaki R, Wang JJ, Ji GJ et al (2008) Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology 115(8):1376–1381, 1381 e1371-1372

    Article  PubMed  Google Scholar 

  9. Kawasaki R, Wang JJ, Mitchell P et al (2008) Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians. Br J Ophthalmol 92(10):1320–1324

    Article  CAS  PubMed  Google Scholar 

  10. Kawasaki R, Wang JJ, Sato H et al (2009) Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond) 23(5):1045–1051

    Article  CAS  Google Scholar 

  11. Koh V, Cheung CY, Wong WL et al (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53(2):1018–1022

    Article  PubMed  Google Scholar 

  12. Li Y, Xu L, Wang YX, You QS, Yang H, Jonas JB (2008) Prevalence of age-related maculopathy in the adult population in China: the Beijing eye study. Am J Ophthalmol 146(2):329

    Article  PubMed  Google Scholar 

  13. McCarty DJ, Mukesh BN, Chikani V et al (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol 140(2):288–294

    Article  PubMed  Google Scholar 

  14. Ng CH, Cheung N, Wang JJ et al (2011) Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 118(4):694–699

    Article  PubMed  Google Scholar 

  15. Xie XW, Xu L, Wang YX, Jonas JB (2008) Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch Clin Exp Ophthalmol 246(11):1519–1526

    Article  PubMed  Google Scholar 

  16. You Q, Xu L, Jonas JB (2008) Prevalence and associations of epiretinal membranes in adult Chinese: the Beijing Eye Study. Eye (Lond) 22(7):874–879

    Article  CAS  Google Scholar 

  17. You QS, Xu L, Jonas JB (2008) Prevalence of crowded optic discs in adult Chinese. The Beijing Eye Study. Graefes Arch Clin Exp Ophthalmol 246(9):1291–1293

    Article  PubMed  Google Scholar 

  18. You QS, Xu L, Wang YX, Jonas JB (2009) Prevalence of optic disc drusen in an adult Chinese population: the Beijing Eye Study. Acta Ophthalmol 87(2):227–228

    Article  PubMed  Google Scholar 

  19. Zhu XF, Peng JJ, Zou HD et al (2012) Prevalence and risk factors of idiopathic epiretinal membranes in Beixinjing blocks, Shanghai, China. PLoS One 7(12):e51445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein R, Klein BE, Wang Q, Moss SE (1994) The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 92:403–425, discussion 425-430

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sebag J (2008) Vitreoschisis. Graefes Arch Clin Exp Ophthalmol 246(3):329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129, discusion 129-131

    PubMed  PubMed Central  Google Scholar 

  23. Rutka JT, Murakami M, Dirks PB et al (1997) Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 87(3):420–430

    Article  CAS  PubMed  Google Scholar 

  24. Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  PubMed  Google Scholar 

  25. Hiscott PS, Grierson I, Trombetta CJ, Rahi AH, Marshall J, McLeod D (1984) Retinal and epiretinal glia--an immunohistochemical study. Br J Ophthalmol 68(10):698–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu YB, Iandiev I, Hollborn M et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25(2):624–631

    Article  CAS  PubMed  Google Scholar 

  27. Reichenbach A, Bringmann A (2010) Muller cells in the healthy retina. Muller cells in the healthy and diseased retina. London, UK: Springer Science+Business media 53-55.

  28. Kenawy N, Wong D, Stappler T et al (2010) Does the presence of an epiretinal membrane alter the cleavage plane during internal limiting membrane peeling? Ophthalmology 117(2):320–323 e321

    Article  PubMed  Google Scholar 

  29. Zhang Z, Dong F, Zhao C et al (2015) Natural course of vitreomacular traction syndrome observed by spectral-domain optical coherence tomography. Can J Ophthalmol 50(2):172–179

    Article  CAS  PubMed  Google Scholar 

  30. Kim JH, Kang SW, Kong MG, Ha HS (2013) Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 251(4):1055–1064

    Article  PubMed  Google Scholar 

  31. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880

    Article  CAS  PubMed  Google Scholar 

  32. Francke M, Faude F, Pannicke T et al (2001) Electrophysiology of rabbit Muller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42(5):1072–1079

    CAS  PubMed  Google Scholar 

  33. Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Muller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41(2):529–536

    CAS  PubMed  Google Scholar 

  34. McGillem GS, Dacheux RF (1998) Migration of retinal microglia in experimental proliferative vitreoretinopathy. Exp Eye Res 67(3):371–375

    Article  CAS  PubMed  Google Scholar 

  35. Erickson PA, Fisher SK, Guerin CJ, Anderson DH, Kaska DD (1987) Glial fibrillary acidic protein increases in Muller cells after retinal detachment. Exp Eye Res 44(1):37–48

    Article  CAS  PubMed  Google Scholar 

  36. Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    Article  CAS  PubMed  Google Scholar 

  37. Lewis GP, Guerin CJ, Anderson DH, Matsumoto B, Fisher SK (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 118(3):368–376

    Article  CAS  PubMed  Google Scholar 

  38. Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245(1):93–100

    Article  PubMed  Google Scholar 

  39. McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye (Lond) 1(Pt 2):263–281

    Article  Google Scholar 

  40. Gupta P, Sadun AA, Sebag J (2008) Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina 28(3):447–452

    Article  PubMed  Google Scholar 

  41. Shiono A, Kogo J, Klose G et al (2013) Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery. Ophthalmology 120(4):788–794

    Article  PubMed  Google Scholar 

  42. Michalewski J, Michalewska Z, Cisiecki S, Nawrocki J (2007) Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol 245(11):1623–1631

    Article  PubMed  Google Scholar 

  43. Mitamura Y, Hirano K, Baba T, Yamamoto S (2009) Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol 93(2):171–175

    Article  CAS  PubMed  Google Scholar 

  44. Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117(4):798–805

    Article  PubMed  Google Scholar 

  45. Inoue M, Morita S, Watanabe Y et al (2010) Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol 150(6):834–839

    Article  PubMed  Google Scholar 

  46. Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2012) Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci 53(11):6770–6775

    Article  PubMed  Google Scholar 

  47. Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120(12):2611–2619

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The contributions of the authors were as follows: design and conduct of the study (MRR, GlC); collection (FA, DM, CC), management (FA, DM), analysis (FA, DM, MR), and interpretation of the data (MRR, FA, DM, GC); preparation (MRR, GlC), review, or approval of the manuscript (MRR, GiC); and decision to submit the manuscript for publication (MRR, GlG, GC, MR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario R. Romano.

Ethics declarations

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

No funding was received for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, M.R., Cennamo, G., Amoroso, F. et al. Intraretinal changes in the presence of epiretinal traction. Graefes Arch Clin Exp Ophthalmol 255, 31–38 (2017). https://doi.org/10.1007/s00417-016-3413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3413-z

Keywords

Navigation