Skip to main content

Advertisement

Log in

Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca2+ channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used.

Methods

Recording of the transretinal receptor potentials from the isolated bovine retina.

Results

The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors.

Conclusion

Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sickel W (1965) Respiratory and electrical responses to light stimulation in the retina of the frog. Science 148:648–651

    Article  CAS  PubMed  Google Scholar 

  2. Sickel W (1972) Retinal metabolism in dark and light. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology. Springer-Verlag, Berlin, pp 667–727

    Google Scholar 

  3. Lüke C, Walter P, Bartz-Schmidt KU, Brunner R, Heimann K, Sickel W (1997) Effects of antiviral agents on retinal function in vertebrate retina. Adv Ocul Toxicol 13:107–112

    Article  Google Scholar 

  4. Walter P, Lüke C, Sickel W (1999) Antibiotics and light responses in superfused bovine retina. Cell Mol Neurobiol 19:87–92

    Article  CAS  PubMed  Google Scholar 

  5. Lüke M, Lüke C, Hescheler J, Schneider T, Sickel W (2005) Effects of phosphodiesterase type 5 inhibitor sildenafil on retinal function in isolated superfused retina. J Ocul Pharmacol Ther 21:305–314

    Article  PubMed  Google Scholar 

  6. Lüke M, Warga M, Ziemssen F, Gelisken F, Grisanti S, Schneider T, Lüke C, Partsch M, Bartz-Schmidt KU, Szurman P (2006) Effects of bevacizumab on retinal function in isolated vertebrate retina. Br J Ophthalmol 90:1178–1182

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lüke M, Krott R, Warga M, Szurman P, Grisanti S, Bartz-Schmidt KU, Schneider T, Luke C (2007) Effects of the protein tyrosine kinase inhibitor genistein and taurine on retinal function in isolated superfused retina. Graefes Arch Clin Exp Ophthalmol 245:242–248

    Article  PubMed  Google Scholar 

  8. Lüke M, Januschowski K, Beutel J, Warga M, Grisanti S, Peters S, Schneider T, Lüke C, Bartz-Schmidt KU, Szurman P (2008) The effects of triamcinolone crystals on retinal function in a model of isolated perfused vertebrate retina. Exp Eye Res 87:22–29

    Article  PubMed  Google Scholar 

  9. Alt A, Hilgers R-D, Tura A, Nassar K, Schneider T, Hüber A, Januschowski K, Grisanti S, Lüke J, Lüke M (2013) The neuroprotective potential of rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in response to hypoxia in isolated bovine retina. Cell Physiol Biochem 32(1):218–234

  10. Ranjbar M, Alt A, Nassar K, Reinsberg M, Schneider T, Grisanti S, Lüke J, Lüke M (2014) The concentration-dependent effects of indocyanine green on retinal function in the electrophysiological ex vivo model of isolated perfused vertebrate retina. Ophthalmic Res 51:167–171

    Article  PubMed  Google Scholar 

  11. Tura A, Alt A, Haritoglou C, Meyer CH, Schneider T, Grisanti S, Lüke J, Lüke M, for the international Chromovitrectomy Collaboration (2014) Testing the effects of the dye Acid violet-17 on retinal function for an intraocular application in vitreo-retinal surgery. Graefes Arch Clin Exp Ophthalmol 252:1927–1937

    Article  PubMed  Google Scholar 

  12. Sickel W (1977) Experimentelle Elektroretinographie der Metallosen. In: Neubauer H (ed) Intraocularer Fremdkörper und metallose. Bergmann-Verlag, München, pp 111–118

    Chapter  Google Scholar 

  13. Zamponi GW, Bourinet E, Snutch TP (1996) Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol 151:77–90

    Article  CAS  PubMed  Google Scholar 

  14. Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J 77:3034–3042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 281:4823–4830

    Article  CAS  PubMed  Google Scholar 

  16. Kang HW, Moon HJ, Joo SH, Lee JH (2007) Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel. FEBS Lett 581:5774–5780

    Article  CAS  PubMed  Google Scholar 

  17. Lüke M, Henry M, Lingohr T, Maghsoodian M, Hescheler J, Sickel W, Schneider T (2005) A Ni2+-sensitive component of the ERG-b-wave from the isolated bovine retina is related to E-type voltage-gated Ca2+ channels. Graefes Arch Clin Exp Ophthalmol 243:933–941

    Article  PubMed  Google Scholar 

  18. Siapich SA, Wrubel H, Albanna W, Alnawaiseh M, Hescheler J, Weiergräber M, Lüke M, Schneider T (2010) Effect of ZnCl2 and chelation of zinc ions by N, N-diethyldithiocarbamate (DEDTC) on the ERG b-wave amplitude from the isolated and superfused vertebrate retina. Curr Eye Res 35:322–334

    Article  CAS  PubMed  Google Scholar 

  19. Schneider T, Wei X, Olcese R, Costantin JL, Neely A, Palade P, Perez-Reyes E, Qin N, Zhou J, Crawford GD, Smith RG, Appel SH, Stefani E, Birnbaumer L (1994) Molecular analysis and functional expression of the human type E α1 subunit. Recept Channels 2:255–270

    CAS  PubMed  Google Scholar 

  20. Mehrke G, Pereverzev A, Grabsch H, Hescheler J, Schneider T (1997) Receptor mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett 408:261–270

    Article  CAS  PubMed  Google Scholar 

  21. Shcheglovitov A, Vitko I, Lazarenko RM, Orestes P, Todorovic SM, Perez-Reyes E (2012) Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Ca(v)2.3 calcium channels. J Gen Physiol 139:219–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Alnawaiseh M, Albanna W, Chen C-C, Campbell KP, Hescheler J, Lüke M, Schneider T (2011) Two separate Ni2+ sensitive voltage-gated Ca2+ channels modulate transretinal signalling in the isolated murine retina. Acta Ophthalmol 89:e579–e590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Siapich SA, Banat M, Albanna W, Hescheler J, Lüke M, Schneider T (2009) Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogramm b-wave amplitude from the isolated superfused vertebrate retina. Acta Ophthalmol 87:854–865

    Article  CAS  PubMed  Google Scholar 

  24. Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klöckner U, Hescheler J, Weiergräber M, Schneider T (2006) The molecular chaperone hsp70 interacts with the cytosolic II-III loop of the Cav2.3 E-type voltage-gated Ca2+ channel. Cell Physiol Biochem 17:97–110

    Article  CAS  PubMed  Google Scholar 

  25. Radhakrishnan K, Kamp MA, Siapich SA, Hescheler J, Lüke M, Schneider T (2011) Cav2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase. Cell Physiol Biochem 27:421–432

    Article  CAS  PubMed  Google Scholar 

  26. Randall AD, Tsien RW (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36:879–893

    Article  CAS  PubMed  Google Scholar 

  27. Sickel W (1972) Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina. Adv Exp Med Biol 24:101–118

    Article  CAS  PubMed  Google Scholar 

  28. Lüke M, Weiergräber M, Brand C, Siapich SA, Banat M, Hescheler J, Lüke C, Schneider T (2005) The isolated perfused bovine retina — a sensitive tool for pharmacological research on retinal function. Brain Res Brain Res Protoc 16:27–36

    Article  PubMed  Google Scholar 

  29. Albanna W, Banat M, Albanna N, Alnawaiseh M, Siapich SA, Igelmund P, Weiergraber M, Luke M, Schneider T (2009) Longer lasting electroretinographic recordings from the isolated and superfused murine retina. Graefes Arch Clin Exp Ophthalmol 247:1339–1352

    Article  PubMed  Google Scholar 

  30. Yeh HH, Kolb JE (1997) Ethanol modulation of GABA-activated current responses in acutely dissociated retinal bipolar cells and ganglion cells. Alcohol Clin Exp Res 21:647–655

    Article  CAS  PubMed  Google Scholar 

  31. Xu H, Zhao J, Yang X (2002) Expression of voltage-dependent calcium channel subunits in the rat retina. Neurosci Lett 329:297

    Article  CAS  PubMed  Google Scholar 

  32. Xu HP, Zhao JW, Yang XL (2003) Cholinergic and dopaminergic amacrine cells differentially express calcium channel subunits in the rat retina. Neuroscience 118:763–768

    Article  CAS  PubMed  Google Scholar 

  33. Gottlob I, Wundsch L, Tuppy FK (1988) The rabbit electroretinogram: effect of GABA and its antagonists. Vis Res 28:203–210

    Article  CAS  PubMed  Google Scholar 

  34. Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, Saez-Atienzar S, Sancho-Pelluz J, Jordan J, Galindo MF, Romero FJ (2014) Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death Dis 5:e1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GA, Chebib M, Harris RA (2014) GABAA receptors containing rho1 subunits contribute to in vivo effects of ethanol in mice. PLoS ONE 9:e85525

    Article  PubMed Central  PubMed  Google Scholar 

  36. Sancho-Tello M, Muriach M, Barcia J, Bosch-Morell F, Genoves JM, Johnsen-Soriano S, Romero B, Almansa I, Diaz-Llopis M, Garcia-Delpech S, Roma J, Romero FJ (2008) Chronic alcohol feeding induces biochemical, histological, and functional alterations in rat retina. Alcohol Alcohol 43:254–260

    Article  CAS  PubMed  Google Scholar 

  37. Bonet-Ponce L, Saez-Atienzar S, da Casa C, Flores-Bellver M, Barcia JM, Sancho-Pelluz J, Romero FJ, Jordan J, Galindo MF (2015) On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim Biophys Acta 1852:1400–1409

    Article  CAS  PubMed  Google Scholar 

  38. Johnston K, Timney B (2013) Alcohol and lateral inhibitory interactions in human vision. Perception 42:1301–1310

    Article  PubMed  Google Scholar 

  39. Chavez AE, Diamond JS (2008) Diverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina. J Neurosci 28:7919–7928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chavez AE, Grimes WN, Diamond JS (2010) Mechanisms underlying lateral gabaergic feedback onto rod bipolar cells in rat retina. J Neurosci 30:2330–2339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Eggers ED, Mazade RE, Klein JS (2013) Inhibition to retinal rod bipolar cells is regulated by light levels. J Neurophysiol 110:153–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li W, Chen S, DeVries SH (2010) A fast rod photoreceptor signaling pathway in the mammalian retina. Nat Neurosci 13:414–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mazade RE, Eggers ED (2013) Light adaptation alters the source of inhibition to the mouse retinal OFF pathway. J Neurophysiol 110:2113–2128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 205:529–564

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Köln Fortune Program/Faculty of Medicine, University of Köln and the Center of Molecular Medicine Cologne/Zentrum für Molekulare Medizin Köln (Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Förderkennzeichen 01 KS 9502, to TS and JH).

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Schneider.

Additional information

Toni Schneider and Matthias Lüke contributed equally to senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure

ERG recordings under scotopic conditions (stimulus light intensity 6.3 mlx for 0.5 sec, every 5 min). Mean values of this experiment are included in Table 2 as experiment #5. a Time course of the b-wave amplitude before and during adding 0.01 % ethanol to the standard nutrition solution. Note, the amplitude increases by ethanol from 17.4 ± 0.5 μV (n = 10 ERG traces) to 22.4 ± 0.3 μV (n = 10), which represents a 1.29-fold increase, which normally would be expected to be caused by NiCl2 (15 μM). Even when ethanol was washed out, no NiCl2-mediated increase was observed. The slight reduction of the b-wave after nearly 5 hours of incubation may be due to the length of the experiment. The numbers #1 to #5 correspond to individual ERG traces as shown in panels c1 to c5. b Time course of the implicit time for each of the conditions described in a and as indicated by the information bar in both panels. Note, the implicit time starts to increase over time under ethanol and increases again and even stronger under NiCl2 (15 μM). c Individual ERG traces, which were recorded under the conditions as shown in a and as described in each subpanel # c1 to # c5. The amplitudes do not change, but the implicit times get longer over time. (PPTX 1540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siapich, S.A., Akhtar, I., Hescheler, J. et al. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction. Graefes Arch Clin Exp Ophthalmol 253, 1713–1719 (2015). https://doi.org/10.1007/s00417-015-3070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3070-7

Keywords

Navigation