Skip to main content

Advertisement

Log in

A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells.

Methods

SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1 rnu allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1 rnu allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1 rnu mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers.

Results

After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery.

Conclusions

This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

hESC:

Human embryonic stem cells

RD:

Retinal degeneration

GC:

Ganglion cell layer

IP:

Inner plexiform layer

IN:

Inner nuclear layer

ON:

Outer nuclear layer

RPE:

Retinal pigment epithelium

H:

Host

T:

Transplant

CRALBP:

Cellular retinaldehyde binding protein

GFAP:

Glial fibrillary acidic protein

NF:

Neurofilament

MAP:

Microtubule-associated protein

NRL:

Neural retina-specific leucine zipper protein

Otx2:

Orthodenticle homolog 2 homeobox protein

PKC:

Protein kinase C

RA:

Retinoic acid

HA:

Hyaluronic acid

IST:

Insulin/Selenite/Transferrin

T3:

Triiodothyronine

References

  1. Nussenblatt RB, Liu B, Li Z (2009) Age-related macular degeneration: an immunologically driven disease. Curr Opin Investig Drugs 10:434–442

    CAS  PubMed  Google Scholar 

  2. Sahel J, Bonnel S, Mrejen S, Paques M (2010) Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 47:160–167. doi:10.1159/000320079

    Article  PubMed  Google Scholar 

  3. Huang Y, Enzmann V, Ildstad ST (2011) Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev 7:434–445. doi:10.1007/s12015-010-9192-8

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kokotas H, Grigoriadou M, Petersen MB (2011) Age-related macular degeneration: genetic and clinical findings. Clin Chem Lab Med 49:601–616. doi:10.1515/CCLM.2011.091

    Article  CAS  PubMed  Google Scholar 

  5. Trifunovic D, Sahaboglu A, Kaur J, Mencl S, Zrenner E, Ueffing M, Arango-Gonzalez B, Paquet-Durand F (2012) Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr Mol Med 12:598–612

    Article  CAS  PubMed  Google Scholar 

  6. Sin HP, Liu DT, Lam DS (2012) Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmol. doi:10.1111/j.1755-3768.2011.02357.x

    PubMed  Google Scholar 

  7. Wen R, Tao W, Li Y, Sieving PA (2012) CNTF and retina. Prog Retin Eye Res 31:136–151. doi:10.1016/j.preteyeres.2011.11.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Thanos C, Emerich D (2005) Delivery of neurotrophic factors and therapeutic proteins for retinal diseases. Expert Opin Biol Ther 5:1443–1452. doi:10.1517/14712598.5.11.1443

    Article  CAS  PubMed  Google Scholar 

  9. LaVail MM (2005) Survival factors for treatment of retinal degenerative disorders: preclinical gains and issues for translation into clinical studies. Retina 25:S25–S26

    Article  PubMed  Google Scholar 

  10. Lund R (2008) Cell-based therapies to limit photoreceptor degeneration. Arch Soc Esp Oftalmol 83:457–464

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720. doi:10.1016/S0140-6736(12)60028-2

    Article  CAS  PubMed  Google Scholar 

  12. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45:4167–4173. doi:10.1167/iovs.04-0511

    Article  PubMed  Google Scholar 

  13. Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, Barnard AR, MacLaren RE (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 110:1101–1106. doi:10.1073/pnas.1119416110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79. doi:10.1016/j.stem.2008.10.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  CAS  PubMed  Google Scholar 

  16. Mansergh FC, Vawda R, Millington-Ward S, Kenna PF, Haas J, Gallagher C, Wilson JH, Humphries P, Ader M, Farrar GJ (2010) Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival. Exp Eye Res 91:500–512. doi:10.1016/j.exer.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Aramant RB, Seiler MJ (2004) Progress in retinal sheet transplantation. Prog Retin Eye Res 23:475–494

    Article  PubMed  Google Scholar 

  18. Seiler MJ, Aramant RB, Keirstead HS (2008) Retinal transplants: hope to preserve and restore vision? Opt Photonics News 19:37–47

    Article  Google Scholar 

  19. Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687. doi:10.1016/j.preteyeres.2012.06.003

    Article  PubMed Central  PubMed  Google Scholar 

  20. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146:172–182. doi:10.1016/j.ajo.2008.04.009

    Article  PubMed  Google Scholar 

  21. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703. doi:10.1073/pnas.0905245106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yue F, Johkura K, Shirasawa S, Yokoyama T, Inoue Y, Tomotsune D, Sasaki K (2010) Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun 394:877–883. doi:10.1016/j.bbrc.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  23. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763. doi:10.1371/journal.pone.0008763

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S, Daley GQ, Young MJ (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6:e18992. doi:10.1371/journal.pone.0018992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson JA, Gamm DM (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218. doi:10.1002/stem.674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Parameswaran S, Balasubramanian S, Babai N, Qiu F, Eudy JD, Thoreson WB, Ahmad I (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28:695–703. doi:10.1002/stem.320

    Article  CAS  PubMed  Google Scholar 

  27. Hambright D, Park KY, Brooks M, McKay R, Swaroop A, Nasonkin IO (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. doi:10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  29. Steinberg RH, Flannery JG, Naash M, Oh P, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, LaVail MM (1996) Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes [ARVO abstract]. Invest Ophthalmol Vis Sci 37:S698

    Google Scholar 

  30. Pennesi ME, Nishikawa S, Matthes MT, Yasumura D, LaVail MM (2008) The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats. Exp Eye Res 87:561–570. doi:10.1016/j.exer.2008.09.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Martinez-Navarrete G, Seiler MJ, Aramant RB, Fernandez-Sanchez L, Pinilla I, Cuenca N (2011) Retinal degeneration in two lines of transgenic S334ter rats. Exp Eye Res 92:227–237. doi:10.1016/j.exer.2010.12.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Segre JA, Nemhauser JL, Taylor BA, Nadeau JH, Lander ES (1995) Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 28:549–559. doi:10.1006/geno.1995.1187

    Article  CAS  PubMed  Google Scholar 

  33. Hirasawa T, Yamashita H, Makino S (1998) Genetic typing of the mouse and rat nude mutations by PCR and restriction enzyme analysis. Exp Anim 47:63–67

    Article  CAS  PubMed  Google Scholar 

  34. Aramant RB, Seiler MJ (1994) Human embryonic retinal cell transplants in athymic immunodeficient rat hosts. Cell Transplant 3:461–474

    CAS  PubMed  Google Scholar 

  35. Guest JD, Rao A, Olson L, Bunge MB, Bunge RP (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 148:502–522. doi:10.1006/exnr.1997.6693

    Article  CAS  PubMed  Google Scholar 

  36. Aramant RB, Seiler MJ (2002) Transplanted sheets of human retina and retinal pigment epithelium develop normally in nude rats. Exp Eye Res 75:115–125

    Article  CAS  PubMed  Google Scholar 

  37. Nasonkin I, Mahairaki V, Xu L, Hatfield G, Cummings BJ, Eberhart C, Ryugo DK, Maric D, Bar E, Koliatsos VE (2009) Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum. Stem Cells 27:2414–2426. doi:10.1002/stem.177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liang SC, Lin SZ, Yu JF, Wu SF, Wang SD, Liu JC (1997) F344-rnu/rnu athymic rats: breeding performance and acceptance of subcutaneous and intracranial xenografts at different ages. Lab Anim Sci 47:549–553

    CAS  PubMed  Google Scholar 

  39. Nistor G, Seiler MJ, Yan F, Ferguson D, Keirstead HS (2010) Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells. J Neurosci Methods 190:63–70. doi:10.1016/j.jneumeth.2010.04.025

    Article  PubMed  Google Scholar 

  40. Aramant RB, Seiler MJ (2002) Retinal transplantation—advantages of intact fetal sheets. Prog Retin Eye Res 21:57–73

    Article  PubMed  Google Scholar 

  41. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vugler AA (2010) Progress toward the maintenance and repair of degenerating retinal circuitry. Retina 30:983–1001. doi:10.1097/IAE.0b013e3181e2a680

    Article  PubMed  Google Scholar 

  43. Clarke L, Ballios BG, van der Kooy D (2012) Generation and clonal isolation of retinal stem cells from human embryonic stem cells. Eur J Neurosci 36:1951–1959. doi:10.1111/j.1460-9568.2012.08123.x

    Article  PubMed Central  PubMed  Google Scholar 

  44. Thliveris JA, Yatscoff RW, Lukowski MP, Copeland KR (1991) Cyclosporine nephrotoxicity–experimental models. Clin Biochem 24:93–95

    Article  CAS  PubMed  Google Scholar 

  45. Cibulskyte D, Kaalund H, Pedersen M, Horlyck A, Marcussen N, Hansen HE, Madsen M, Mortensen J (2005) Chronic cyclosporine nephrotoxicity: a pig model. Transplant Proc 37:3298–3301. doi:10.1016/j.transproceed.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  46. Granholm AC, Eriksdotter-Nilsson M, Stromberg I, Stieg P, Seiger A, Bygdeman M, Geffard M, Oertel W, Dahl D, Olson L et al (1989) Morphological and electrophysiological studies of human hippocampal transplants in the anterior eye chamber of athymic nude rats. Exp Neurol 104:162–171

    Article  CAS  PubMed  Google Scholar 

  47. Hall M, Wang Y, Granholm AC, Stevens JO, Young D, Hoffer BJ (1992) Comparison of fetal rabbit brain xenografts to three different strains of athymic nude rats: electrophysiological and immunohistochemical studies of intraocular grafts. Cell Transplant 1:71–82

    CAS  PubMed  Google Scholar 

  48. Kim M, Park IY, Lim J, Kim Y, Han KT, Chung WH, Han K (2006) Antitumor and normal cell protective effect of PKC412 in the athymic mouse model of ovarian cancer. Ann Clin Lab Sci 36:455–460

    CAS  PubMed  Google Scholar 

  49. Hurelbrink CB, Barker RA (2005) Migration of cells from primary transplants of allo- and xenografted foetal striatal tissue in the adult rat brain. Eur J Neurosci 21:1503–1510. doi:10.1111/j.1460-9568.2005.03963.x

    Article  PubMed  Google Scholar 

  50. Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406. doi:10.2217/rme.11.22

    Article  PubMed Central  PubMed  Google Scholar 

  51. Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven A, Martin JM, Wright L, Shen W, Capowski EE, Percin EF, Perez ET, Zhong X, Canto-Soler MV, Gamm DM (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53:2007–2019. doi:10.1167/iovs.11-9313

    Article  PubMed Central  PubMed  Google Scholar 

  52. Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS (2010) Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31:508–520. doi:10.1111/j.1460-9568.2010.07085.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Yang PB, Seiler MJ, Aramant RB, Yan F, Mahoney MJ, Kitzes LM, Keirstead HS (2010) Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp Eye Res 91:727–738. doi:10.1016/j.exer.2010.08.022

    Article  CAS  PubMed  Google Scholar 

  54. Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359. doi:10.1038/ni1328

    Article  CAS  PubMed  Google Scholar 

  55. Lund RD, Ono SJ, Keegan DJ, Lawrence JM (2003) Retinal transplantation: progress and problems in clinical application. J Leukoc Biol 74:151–160

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee R, Lund RD, Radel JD (1993) Anatomical and functional consequences of induced rejection of intracranial retinal transplants. Neuroscience 56:939–953

    Article  CAS  PubMed  Google Scholar 

  57. Donoso LA, Merryman CF, Edelberg KE, Naids R, Kalsow C (1985) S-Antigen in the developing retina and pineal gland: a monoclonal antibody study. Invest Ophthalmol Vis Sci 26:561–567

    CAS  PubMed  Google Scholar 

  58. Saari JC, Bunt-Milam AH, Bredberg DL, Garwin GG (1984) Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vis Res 24:1595–1603

    Article  CAS  PubMed  Google Scholar 

  59. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447–452. doi:10.1038/ng774

    Article  CAS  PubMed  Google Scholar 

  60. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251:915–918

    Article  CAS  PubMed  Google Scholar 

  61. Molday RS, MacKenzie D (1983) Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22:653–660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Lincy Foundation (MJS, HSK); NIH P40OD011062 (ECB). Access to the Optical Biology Core facility of the Developmental Biology Center, a Shared Resource, was supported in part by a Cancer Center Support Grant (CA-62203) and a Center for Complex Biological Systems Support Grant (GM-076516) at the University of California, Irvine. MKJ was supported by CIRM TB1-1182. We thank Matthew M. LaVail, UCSF, for the founder breeding pairs of transgenic S334ter line 3 rats. The initial breeding of the strain was done at Taconic Inc., Albany, NY, USA. Personnel of Taconic involved in the project included Kaitlyn Waterbury, Jacob Luft, and Kimberly Meagher. We thank Gabriel Nistor (now California Stem Cells Inc., Irvine, CA, USA) for designing the hESC differentiation protocol and preparing the cells for transplantation.

Conflict of interest

MJS and RBA have proprietary interests in the implantation instrument and procedure (Ocular Transplantation LLC; patents #5,941,250; 6,159,218; 6,156,042); RBA is also an employee of Ocular Transplantation LLC. HSK was on the scientific advisory board of California Stem Cell, Inc. at the time of the experiments; and is now President and Chief Executive Officer of California Stem Cell, Inc. since December 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans S. Keirstead.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seiler, M.J., Aramant, R.B., Jones, M.K. et al. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression. Graefes Arch Clin Exp Ophthalmol 252, 1079–1092 (2014). https://doi.org/10.1007/s00417-014-2638-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2638-y

Keywords

Navigation