Skip to main content

Advertisement

Log in

Choroidal assessment in idiopathic panuveitis using optical coherence tomography

  • Inflammatory Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Idiopathic panuveitis is a diagnosis of exclusion that lacks distinguishing features on fluorescein and indocyanine green angiography. Choroidal hypoperfusion or ischaemia has been implicated in panuveitis of different aetiologies. In this study, we use enhanced depth imaging optical coherence tomography (OCT) to examine the choroid and its vasculature in patients with this disease.

Methods

In this retrospective, cross-sectional study, OCT-derived measurements of retinal and choroidal thickness were obtained after manual segmentation using custom software. Choroidal measurements were further subdivided into Haller’s large vessel layer (HLVL) and Sattler’s medium vessel layer (SMVL), and correlated with clinical parameters.

Results

Twenty-one eyes from 21 patients were included. A reduction in hypo-reflective spaces, corresponding to vascular lumens, was observed in HLVL. The mean thickness of both the choroid (233.7 ± 73.3 μm), and HLVL (167.8 ± 53.7 μm), was less than that previously reported for normal eyes. Choroidal thickness expressed as a ratio to retina thickness showed significant correlation to visual acuity (r = 0.58, p = 0.006). This correlation was maintained in the ratio between HLVL and retinal thickness (r = 0.56, p = 0.009), but not in SMVL to retinal thickness (r = 0.352, p = 0.12).

Conclusions

This study reports novel OCT-derived parameters in patients with idiopathic panuveitis. We noted loss of hyporeflectivity in HLVL, and thinning of both HLVL and the choroid as a whole. The observed correlation between visual acuity and the ratio of choroidal to retinal thickness is a strong enhanced depth imaging (EDI)-OCT derived candidate for prospective validation in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

RPE:

Retinal pigment epithelium

OCT:

Optical coherence tomography

EDI:

Enhanced depth imaging

FA:

Fluorescein angiography

ICGA:

Indocyanine green angiography

BCVA:

Best corrected visual acuity

logMAR:

Logarithm of the minimum angle of resolution

CMO:

Cystoid macular oedema

ERM:

Epiretinal membrane

HLVL:

Haller’s large vessel layer

SMVL:

Sattler’s medium vessel layer

VKH:

Vogt Koyanagi Harada

MEWDS:

Multiple evanescent white dot syndrome

References

  1. Weiner A, BenEzra D (1991) Clinical patterns and associated conditions in chronic uveitis. Am J Ophthalmol 112:151–158

    PubMed  CAS  Google Scholar 

  2. Rothova A, Buitenhuis HJ, Meenken C, Brinkman CJ, Linssen A, Alberts C, Luyendijk L, Kijlstra A (1992) Uveitis and systemic disease. Br J Ophthalmol 76:137–141

    Article  PubMed  CAS  Google Scholar 

  3. Pivetti-Pezzi P, Accorinti M, La Cava M, Colabelli Gisoldi RA, Abdulaziz MA (1996) Endogenous uveitis: an analysis of 1,417 cases. Ophthalmologica 210:234–238

    Article  PubMed  CAS  Google Scholar 

  4. Baarsma GS (1992) The epidemiology and genetics of endogenous uveitis: a review. Curr Eye Res 11(Suppl):1–9

    Article  PubMed  Google Scholar 

  5. Henderly DE, Genstler AJ, Smith RE, Rao NA (1987) Changing patterns in uveitis. Am J Ophthalmol 103:131–136

    PubMed  CAS  Google Scholar 

  6. Rodriguez A, Calonge M, Pedroza-Seres M, Akova YA, Messmer EM, D’Amico DJ, Foster CS (1996) Referral patterns of uveitis in a tertiary eye care center. Arch Ophthalmol 114:593–599

    Article  PubMed  CAS  Google Scholar 

  7. Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  8. Howe L, Stanford M, Graham E, Marshall J (1998) Indocyanine green angiography in inflammatory eye disease. Eye (Lond) 12:761–767

    Article  Google Scholar 

  9. Yuzawa M, Kawamura A, Matsui M (1993) Indocyanine green video-angiographic findings in Harada’s disease. Jpn J Ophthalmol 37:456–466

    PubMed  CAS  Google Scholar 

  10. Oshima Y, Harino S, Hara Y, Tano Y (1996) Indocyanine green angiographic findings in Vogt–Koyanagi–Harada disease. Am J Ophthalmol 122:58–66

    PubMed  CAS  Google Scholar 

  11. Obana A, Kusumi M, Miki T (1996) Indocyanine green angiographic aspects of multiple evanescent white dot syndrome. Retina 16:97–104

    Article  PubMed  CAS  Google Scholar 

  12. Howe LJ, Woon H, Graham EM, Fitzke F, Bhandari A, Marshall J (1995) Choroidal hypoperfusion in acute posterior multifocal placoid pigment epitheliopathy. An indocyanine green angiography study. Ophthalmology 102:790–798

    PubMed  CAS  Google Scholar 

  13. Machida S, Tanaka M, Murai K, Takahashi T, Tazawa Y (2004) Choroidal circulatory disturbance in ocular sarcoidosis without the appearance of retinal lesions or loss of visual function. Jpn J Ophthalmol 48:392–396

    Article  PubMed  Google Scholar 

  14. Atmaca LS, Sonmez PA (2003) Fluorescein and indocyanine green angiography findings in Behçet’s disease. Br J Ophthalmol 87:1466–1468

    Article  PubMed  CAS  Google Scholar 

  15. Howe LJ, Stanford MR, Graham EM, Marshall J (1997) Choroidal abnormalities in birdshot chorioretinopathy: an indocyanine green angiography study. Eye (Lond) 11:554–559

    Article  Google Scholar 

  16. Vadalà M, Lodato G, Cillino S (2001) Multifocal choroiditis: indocyanine green angiographic features. Ophthalmologica 215:16–21

    Article  PubMed  Google Scholar 

  17. Sadda SR, Joeres S, Wu Z, Updike P, Romano P, Collins AT, Walsh AC (2007) Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. Investig Ophthalmol Vis Sci 48:839–848

    Article  Google Scholar 

  18. Joeres S, Tsong JW, Updike PG, Collins AT, Dustin L, Walsh AC, Romano PW, Sadda SR (2007) Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 48:4300–4307

    Article  Google Scholar 

  19. Keane PA, Liakopoulos S, Ongchin SC, Heussen FM, Msutta S, Chang KT, Walsh AC, Sadda SR (2008) Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 49:3115–3120

    Article  Google Scholar 

  20. Guyer DR, Schachat AP, Green WR (2006) The choroid: structural considerations. In: Ryan SJ (ed) Retina. Elsevier, Philadelphia, pp 33–42

    Google Scholar 

  21. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147:811–815

    Article  PubMed  Google Scholar 

  22. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Investig Ophthalmol Vis Sci 52:5536–5540

    Article  Google Scholar 

  23. Rahman W, Chen FK, Yeoh J, Patel P, Tufail A, Da Cruz L (2011) Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Investig Ophthalmol Vis Sci 52:2267–2271

    Article  Google Scholar 

  24. Yamashita T, Yamashita T, Shirasawa M, Arimura N, Terasaki H, Sakamoto T (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Investig Ophthalmol Vis Sci 53:1102–1107

    Article  Google Scholar 

  25. Ding X, Li J, Zeng J, Ma W, Liu R, Li T, Yu S, Tang S (2011) Choroidal thickness in healthy Chinese subjects. Investig Ophthalmol Vis Sci 52:9555–9560

    Article  Google Scholar 

  26. Fujiwara A, Shiragami C, Shirakata Y, Manabe S, Izumibata S, Shiraga F (2012) Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol 56:230–235

    Article  PubMed  Google Scholar 

  27. Nandakumar N, Branchini L, Regatieri CV (2011) Characterization of choroidal morphology in healthy eyes using spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 52:E-Abstract 285

    Google Scholar 

  28. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31:510–517

    Article  PubMed  Google Scholar 

  29. Fong AH, Li KK, Wong D (2011) Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt–Koyanagi–Harada disease. Retina 31:502–509

    Article  PubMed  Google Scholar 

  30. Aoyagi R, Hayashi T, Masai A, Mitooka K, Gekka T, Kozaki K, Tsuneoka H (2012) Subfoveal choroidal thickness in multiple evanescent white dot syndrome. Clin Exp Optom 95:212–217

    Article  PubMed  Google Scholar 

  31. Yasuno Y, Okamoto F, Kawana K, Yatagai T, Oshika T (2009) Investigation of multifocal choroiditis with panuveitis by three-dimensional high-penetration optical coherence tomography. J Biophotonics 2:435–441

    Article  PubMed  Google Scholar 

  32. Iaccarino G, Cennamo G, Forte R, Cennamo G (2009) Evaluation of posterior pole with echography and optical coherence tomography in patients with Behçet’s disease. Ophthalmologica 223:250–255

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr Sim receives funding from Fight For Sight UK, Grant 1987.

Drs. Keane, Patel, Sim, Lee, Tufail and Pavesio receive financial support from the Department of Health’s NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology. The views expressed in the publication are those of the authors and not necessarily those of the Department of Health.

Dr Zarranz-Ventura is a grant recipient of the Spanish Retina & Vitreous Society (Sociedad Española de Retina y Vítreo, SERV).

The authors have full control of all primary data and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review the data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karampelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karampelas, M., Sim, D.A., Keane, P.A. et al. Choroidal assessment in idiopathic panuveitis using optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251, 2029–2036 (2013). https://doi.org/10.1007/s00417-013-2330-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2330-7

Keywords

Navigation