Skip to main content

Advertisement

Log in

Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To determine the relationship between visual fields and retinal structures measured with spectral-domain optical coherence tomography in preperimetric glaucoma (PPG).

Methods

Twenty-six eyes of 26 patients with PPG and 20 healthy eyes of 20 volunteers were included. All patients underwent Heidelberg retina tomography-2 (HRT2), standard automated perimetry (SAP), frequency-doubling technology (FDT) perimetry, and RTVue-100. SAP and FDT indices, HRT parameters, and circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell complex (mGCC) thicknesses were correlated using Pearson’s test. Areas under the receiver operating characteristic curves (AUROCs) and sensitivity/specificity based on each parameter’s definition of abnormalities were compared between parameters.

Results

Significant differences were found in FDT-MD, FDT-PSD, SAP-PSD, cpRNFL, and mGCC parameters (p < 0.001–0.015), but not in SAP-MD or HRT parameters, between PPG and control groups. Significant correlations were not found between visual field indices and structural parameters, except between FDT-MD and HRT rim area (r = 0.450, p = 0.021) and between FDT-PSD and temporal cpRNFL thickness (r = 0.402, p = 0.021). AUROCs for cpRNFL (p = 0.0047–0.033) and mGCC (p = 0.0082–0.049) parameters were significantly better than those of HRT parameters, whereas significant differences were not found between FDT indices and cpRNFL or mGCC parameters or between cpRNFL and mGCC parameters. Adding average cpRNFL or mGCC thickness to FDT-MD significantly increased sensitivity compared to single parameters (p = 0.016–0.031).

Conclusions

Structural and functional parameters were poorly correlated but complementary for glaucoma detection in PPG. Combining these parameters may improve PPG diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  PubMed  CAS  Google Scholar 

  2. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed  Google Scholar 

  3. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  PubMed  Google Scholar 

  4. Maddess T, Goldberg I, Dobinson J, Wine S, Welsh AH, James AC (1999) Testing for glaucoma with the spatial frequency doubling illusion. Vision Res 39:4258–4273

    Article  PubMed  CAS  Google Scholar 

  5. Petrusca D, Grivich MI, Sher A, Field GD, Gauthier JL, Greschner M, Shlens J, Chichilnisky EJ, Litke AM (2007) Identification and characterization of a Y-like primate retinal ganglion cell type. J Neurosci 27:11019–11027

    Article  PubMed  CAS  Google Scholar 

  6. Crook JD, Peterson BB, Packer OS, Robinson FR, Gamlin PD, Troy JB, Dacey DM (2008) The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J Neurosci 28:12654–12671

    Article  PubMed  CAS  Google Scholar 

  7. Soliman MA, de Jong LA, Ismaeil AA, van den Berg TJ, de Smet MD (2002) Standard achromatic perimetry, short wavelength automated perimetry, and frequency doubling technology for detection of glaucoma damage. Ophthalmology 109:444–454

    Article  PubMed  Google Scholar 

  8. Kogure S, Toda Y, Tsukahara S (2006) Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry. Br J Ophthalmol 90:347–352

    Article  PubMed  CAS  Google Scholar 

  9. Ferreras A, Polo V, Larrosa JM, Pablo LE, Pajarin AB, Pueyo V, Honrubia FM (2007) Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma 16:372–383

    Article  PubMed  Google Scholar 

  10. Nomoto H, Matsumoto C, Takada S, Hashimoto S, Arimura E, Okuyama S, Shimomura Y (2009) Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. J Glaucoma 18:165–171

    Article  PubMed  Google Scholar 

  11. Medeiros FA, Sample PA, Weinreb RN (2004) Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 137:863–871

    Article  PubMed  Google Scholar 

  12. Kamantigue MEG, Joson PJ, Chen PP (2006) Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry. J Glaucoma 15:35–39

    Article  PubMed  Google Scholar 

  13. Lester M, Mikelberg FS, Swindale NV, Drance SM (1997) ROC analysis of Heidelberg Retina Tomograph optic disc shape measures in glaucoma. Can J Ophthalmol 32:382–388

    Google Scholar 

  14. Gardiner SK, Johnson CA, Cioffi GA (2005) Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci 46:3712–3717

    Article  PubMed  Google Scholar 

  15. González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN (2009) Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol 147:1067–1074

    Article  PubMed  Google Scholar 

  16. Garas A, Vargha P, Holló G (2011) Automatic, operator-adjusted, and manual disc definition for optic nerve head and retinal nerve fibre layer measurements with the RTVue-100 optical coherence tomograph. J Glaucoma 20:80–86

    Article  PubMed  Google Scholar 

  17. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314

    Article  PubMed  Google Scholar 

  18. Jeoung JW, Park KH (2010) Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 51:938–945

    Article  PubMed  Google Scholar 

  19. Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N (2011) Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1412–1421

    Article  PubMed  Google Scholar 

  20. Rolle T, Briamonte C, Curto D, Grignolo FM (2011) Ganglion cell complex and retinal nerve fiber layer measured by Fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma. Clin Ophthalmol 5:961–969

    Article  PubMed  Google Scholar 

  21. Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y, Ikeda HO, Nakamura H, Nonaka A, Yoshimura N (2011) Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Ophthalmology 118:2414–2426

    Article  PubMed  Google Scholar 

  22. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–2220

    PubMed  Google Scholar 

  23. El Beltagi TA, Bowd C, Boden C, Amini P, Sample PA, Zangwill LM, Weinreb RN (2003) Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology 110:2185–2191

    Article  PubMed  Google Scholar 

  24. Miglior S, Riva I, Guareschi M, Di Matteo F, Romanazzi F, Buffagni L, Rulli E (2007) Retinal sensitivity and retinal nerve fiber layer thickness measured by optical coherence tomography in glaucoma. Am J Ophthalmol 144:733–740

    Article  PubMed  Google Scholar 

  25. Rao HL, Zangwill LM, Weinreb RN, Leite MT, Sample PA, Medeiros FA (2011) Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol 129:864–871

    Article  PubMed  Google Scholar 

  26. Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Abe H, Takeda H, Sugiyama K, Saito H, Iwase A, Yoshimura N (2010) Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci 51:465–473

    Article  PubMed  Google Scholar 

  27. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristics curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  28. Mardin CY, Horn FK, Jonas JB, Budde WM (1999) Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol 83:299–304

    Article  PubMed  CAS  Google Scholar 

  29. Bozkurt M, Yalmaz PT, Irkec M (2008) Relationship between Humphrey 30-2 SITA standard test, Matrix 30-2 threshold test, and Heidelberg retina tomograph in ocular hypertensive and glaucoma patients. J Glaucoma 17:203–210

    Article  PubMed  Google Scholar 

  30. Burgansky-Eliash Z, Wollstein G, Patel A, Bilonick RA, Ishikawa H, Kagemann L, Dilworth WD, Schuman JS (2007) Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol 91:933–938

    Article  PubMed  Google Scholar 

  31. Iester M, Traverso CE, De Feo F, Sanna G, Altieri M, Vittone P, Calabria G (2005) Correlation between frequency doubling technology and Heidelberg Retina Tomograph. J Glaucoma 14:368–374

    Article  PubMed  Google Scholar 

  32. Zhong Y, Shen X, Zhou X, Cheng Y, Min Y (2009) Blue-on-yellow perimetry and optical coherence tomography in patients with preperimetric glaucoma. Clin Experiment Ophthalmol 37:262–269

    Article  PubMed  Google Scholar 

  33. Kim TW, Zangwill LM, Bowd C, Sample PA, Shah N, Weinreb RN (2007) Retinal nerve fiber layer damage as assessed by optical coherence tomography in eyes with a visual field defect detected by frequency doubling technology perimetry but not by standard automated perimetry. Ophthalmology 114:1053–1057

    Article  PubMed  Google Scholar 

  34. Anderson AJ, Johnson CA (2002) Mechanisms isolated by frequency-doubling technology perimetry. Invest Ophthalmol Vis Sci 43:398–401

    PubMed  Google Scholar 

  35. White AJ, Sun H, Swanson WH, Lee BB (2002) An examination of physiological mechanisms underlying the frequency-doubling illusion. Invest Ophthalmol Vis Sci 43:3590–3599

    PubMed  Google Scholar 

  36. Swanson WH, Sun H, Lee BB, Cao D (2011) Responses of primate retinal ganglion cells to perimetric stimuli. Invest Ophthalmol Vis Sci 52:764–771

    Article  PubMed  Google Scholar 

  37. Sample PA (2000) Short-wavelength automated perimetry: it's role in the clinic and for understanding ganglion cell function. Prog Retin Eye Res 19:369–383

    Article  PubMed  CAS  Google Scholar 

  38. Hong S, Ahn H, Ha SJ, Yeom HY, Seong GJ, Hong YJ (2007) Early glaucoma detection using the Humphrey matrix perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology 114:210–215

    Article  PubMed  Google Scholar 

  39. Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM, Zangwill LM (2006) Combining structural and functional testing for detection of glaucoma. Ophthalmology 113:1593–1602

    Article  PubMed  Google Scholar 

  40. Medeiros FA, Leite MT, Zangwill LM, Weinreb RN (2011) Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. Invest Ophthalmol Vis Sci 52:5794–5803

    Article  PubMed  Google Scholar 

  41. Horn FK, Mardin CY, Bendschneider D, Jünemann AG, Adler W, Tornow RP (2011) Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye (Lond) 25:17–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hangai.

Additional information

Grant: This research was supported in part by a Grant-in-Aid for Scientific Research (20592038) from the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan. The authors have full control of all primary data and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirashima, T., Hangai, M., Nukada, M. et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 251, 129–137 (2013). https://doi.org/10.1007/s00417-012-2076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2076-7

Keywords

Navigation