Skip to main content

Advertisement

Log in

The effect of subretinal viscoelastics on the porcine retinal function

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The functional consequence of long-term retinal detachment in the porcine model is examined by multifocal electroretinography (mfERG). Retinal detachment (RD) in humans leaves permanent visual impairment, despite anatomical successful reattachment surgery. To improve treatment, adjuvant pharmaceutical therapy is needed, and can only be tested in a suitable animal model. The porcine model is promising and the mfERG is well validated in this model. RD was induced in 18 pigs by vitrectomy and healon injection of various concentrations. Preoperatively and 6 weeks postoperatively eight animals were examined by mfERG. The major component P1 was analyzed statistically. Indirect ophthalmoscopy and bilateral color fundus photography (FP) were performed. Selected animals underwent high-resolution optical coherence tomography (OCT). Examination by ophthalmoscopy and FP showed that the RDs remained detached for the 6 weeks of follow-up. The P1 amplitude of the mfERG did not differ significantly between the detached areas, the surrounding attached areas, and the healthy eye (p = 0.25). Similarly, P1 implicit time did not differ between the areas (p = 0.85). The lack of functional consequences of long-term RD makes the porcine model unsuitable for examining adjuvant pharmaceutical RD treatment. Future studies should focus on foveated primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher SK, Lewis GP, Linberg KA, Verardo MR (2005) Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24:395–431

    Article  PubMed  Google Scholar 

  2. Sasoh M, Yoshida S, Kuze M, Uji Y (1997) The multifocal electroretinogram in retinal detachment. Doc Ophthalmol 94:239–252

    Article  PubMed  Google Scholar 

  3. Burton TC (1982) Recovery of visual acuity after retinal detachment involving the macula. Trans Am Ophthalmol Soc 80:475–497

    PubMed  CAS  Google Scholar 

  4. Chisholm IA, McClure E, Foulds WS (1975) Functional recovery of the retina after retinal detachment. Trans Ophthalmol Soc UK 95:167–172

    PubMed  CAS  Google Scholar 

  5. Gundry MF, Davies EW (1974) Recovery of visual acuity after retinal detachment surgery. Am J Ophthalmol 77:310–314

    PubMed  CAS  Google Scholar 

  6. Tani P, Robertson DM, Langworthy A (1981) Prognosis for central vision and anatomic reattachment in rhegmatogenous retinal detachment with macula detached. Am J Ophthalmol 92:611–620

    PubMed  CAS  Google Scholar 

  7. Lewis GP, Linberg KA, Fisher SK (1998) Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest Ophthalmol Vis Sci 39:424–434

    PubMed  CAS  Google Scholar 

  8. Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK (2005) Microglial cell activation following retinal detachment: a comparison between species. Mol Vis 11:491–500

    PubMed  CAS  Google Scholar 

  9. Fisher SK, Erickson PA, Lewis GP, Anderson DH (1991) Intraretinal proliferation induced by retinal detachment. Invest Ophthalmol Vis Sci 32:1739–1748

    PubMed  CAS  Google Scholar 

  10. Cook B, Lewis GP, Fisher SK, Adler R (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 36:990–996

    PubMed  CAS  Google Scholar 

  11. Lewis GP, Charteris DG, Sethi CS, Fisher SK (2002) Animal models of retinal detachment and reattachment: identifying cellular events that may affect visual recovery. Eye (Lond) 16:375–387

    Article  CAS  Google Scholar 

  12. Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113:880–886

    Article  PubMed  CAS  Google Scholar 

  13. Lewis GP, Sethi CS, Linberg KA, Charteris DG, Fisher SK (2003) Experimental retinal reattachment: a new perspective. Mol Neurobiol 28:159–175

    Article  PubMed  CAS  Google Scholar 

  14. Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH (2003) Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 44:416–425

    Article  PubMed  Google Scholar 

  15. Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI (2003) P2Y(2) receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci 44:4505–4514

    Article  PubMed  Google Scholar 

  16. Jacobs GH, Calderone JB, Sakai T, Lewis GP, Fisher SK (2002) An animal model for studying cone function in retinal detachment. Doc Ophthalmol 104:119–132

    Article  PubMed  Google Scholar 

  17. Kroll AJ, Machemer R (1968) Experimental retinal detachment in the owl monkey. 3. Electron microscopy of retina and pigment epithelium. Am J Ophthalmol 66:410–427

    PubMed  CAS  Google Scholar 

  18. Jackson TL, Hillenkamp J, Williamson TH, Clarke KW, Almubarak AI, Marshall J (2003) An experimental model of rhegmatogenous retinal detachment: surgical results and glial cell response. Invest Ophthalmol Vis Sci 44:4026–4034

    Article  PubMed  Google Scholar 

  19. Yang L, Bula D, Arroyo JG, Chen DF (2004) Preventing retinal detachment-associated photoreceptor cell loss in Bax-deficient mice. Invest Ophthalmol Vis Sci 45:648–654

    Article  PubMed  Google Scholar 

  20. Kryger Z, Galli-Resta L, Jacobs GH, Reese BE (1998) The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis Neurosci 15:685–691

    Article  PubMed  CAS  Google Scholar 

  21. Sakai T, Lewis GP, Linberg KA, Fisher SK (2001) The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina. Invest Ophthalmol Vis Sci 42:3264–3273

    PubMed  CAS  Google Scholar 

  22. Kyhn MV, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2008) Functional implications of short-term retinal detachment in porcine eyes: study by multifocal electroretinography. Acta Ophthalmol 86:18–25

    Article  PubMed  Google Scholar 

  23. Simoens P, De SL, Lauwers H (1992) Morphologic and clinical study of the retinal circulation in the miniature pig. A: Morphology of the retinal microvasculature. Exp Eye Res 54:965–973

    Article  PubMed  CAS  Google Scholar 

  24. Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–444

    Article  PubMed  CAS  Google Scholar 

  25. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338

    PubMed  CAS  Google Scholar 

  26. Kyhn MV, Warfvinge K, Scherfig E, Kiilgaard JF, Prause JU, Klassen H, Young M, la Cour M (2009) Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterisation. Exp Eye Res 88:1100–1106

    Article  PubMed  CAS  Google Scholar 

  27. Kyhn MV, Kiilgaard JF, Scherfig E, Prause JU, la Cour M (2008) The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions. Acta Ophthalmol 86:786–793

    Article  PubMed  Google Scholar 

  28. Voss KM, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2007) The multifocal electroretinogram (mfERG) in the pig. Acta Ophthalmol Scand 85:438–444

    Article  Google Scholar 

  29. Ejstrup R, Scherfig E, la Cour M (2011) Electrophysiological consequences of experimental Branch Retinal Vein Occlusion (BRVO) in pigs and the effect of Dorzolamide. Invest Ophthalmol Vis Sci 52:952–958

    Google Scholar 

  30. Miyamoto H, Tazawa Y, Hayasaka A, Nitta J, Egawa I, Kurosaka D (2006) The s-wave of the multifocal electroretinogram in cats. Jpn J Ophthalmol 50:432–437

    Article  PubMed  CAS  Google Scholar 

  31. Ball SL, Petry HM (2000) Noninvasive assessment of retinal function in rats using multifocal electroretinography. Invest Ophthalmol Vis Sci 41:610–617

    PubMed  CAS  Google Scholar 

  32. Anderson DH, Stern WH, Fisher SK, Erickson PA, Borgula GA (1983) Retinal detachment in the cat: the pigment epithelial-photoreceptor interface. Invest Ophthalmol Vis Sci 24:906–926

    PubMed  CAS  Google Scholar 

  33. Pedersen DB, Koch, Jensen P, la Cour M, Kiilgaard JF, Eysteinsson T, Bang K, Wiencke AK, Stefansson E (2005) Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels. Graefes Arch Clin Exp Ophthalmol 243:163–168

  34. Schatz P, Andreasson S (2010) Recovery of retinal function after recent-onset rhegmatogenous retinal detachment in relation to type of surgery. Retina 30:152–159

    Article  PubMed  Google Scholar 

  35. Schatz P, Holm K, Andreasson S (2007) Retinal function after scleral buckling for recent onset rhegmatogenous retinal detachment: assessment with electroretinography and optical coherence tomography. Retina 27:30–36

    Article  PubMed  Google Scholar 

  36. Wu D, Gao R, Zhang G, Wu L (2002) Comparison of pre- and post-operational multifocal electroretinograms of retinal detachment. Chin Med J (Engl) 115:1560–1563

    Google Scholar 

  37. Moschos M, Mallias J, Ladas I, Theodossiadis P, Moschou M, Theodossiadis G (2001) Multifocal ERG in retinal detachment surgery. Eur J Ophthalmol 11:296–300

    PubMed  CAS  Google Scholar 

  38. Rumelt S, Sarrazin L, Averbukh E, Halpert M, Hemo I (2007) Paediatric vs adult retinal detachment. Eye (Lond) 21:1473–1478

    Article  CAS  Google Scholar 

  39. Chappelow AV, Marmor MF (2000) Multifocal electroretinogram abnormalities persist following resolution of central serous chorioretinopathy. Arch Ophthalmol 118:1211–1215

    PubMed  CAS  Google Scholar 

  40. Suzuki K, Hasegawa S, Usui T, Ichibe M, Takada R, Takagi M, Abe H (2002) Multifocal electroretinogram in patients with central serous chorioretinopathy. Jpn J Ophthalmol 46:308–314

    Article  PubMed  Google Scholar 

  41. Kyhn V, Maria C (2007) The Multifocal Electroretinogram (mfERG) in porcine eyes- establishment, sensitivity and functional implications of induced retinal lesions. Acta Ophthalmol Suppl 85:1–24

    Article  Google Scholar 

  42. Forrester JV, Dick AD, McMenamin P, Lee WR (1996) Anatomy of the eye and orbit. 1–86

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Fischer Sørensen.

Additional information

Financial support

The Michaelsen foundation, The Danish Eye Health Society and The Velux Foundation is a non-profit foundations/organizations that support ophthalmological research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, N.F., Ejstrup, R., Svahn, T.F. et al. The effect of subretinal viscoelastics on the porcine retinal function. Graefes Arch Clin Exp Ophthalmol 250, 79–86 (2012). https://doi.org/10.1007/s00417-011-1782-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1782-x

Keywords

Navigation