Skip to main content

Advertisement

Log in

Combinatory inhibition of VEGF and FGF2 is superior to solitary VEGF inhibition in an in vitro model of RPE-induced angiogenesis

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Choroidal neovascularisation (CNV) as a feature of exudative age-related macular degeneration (AMD) is partially regulated by retinal pigment epithelium (RPE). In this study, the effect of combinatory anti-angiogenic treatment was evaluated using a novel in vitro assay of RPE-induced angiogenesis.

Methods

RPE isolated from surgically excised CNV-membranes (CNV-RPE) was used to stimulate sprouting of endothelial cell (EC) spheroids in a 3D collagen matrix. The anti-angiogenic effect of solitary anti-VEGF antibodies (bevacizumab) was compared to a combinatory treatment with anti-VEGF and anti-FGF2 antibodies.

Results

Anti-VEGF treatment inactivated all RPE-derived VEGF but was unable to fully inhibit EC sprouting induced by CNV-RPE. Combined anti-VEGF/anti-FGF treatment inactivated both growth factors and reduced EC sprouting significantly.

Conclusions

RPE from CNV patients expresses angiogenic growth factors that act in part independently of VEGF. Targeted combinatory therapy can be superior to solitary anti-VEGF therapy. One possible candidate for combinatory therapy is FGF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870. doi:10.1097/01.iae.0000242842.14624.e7

    Article  PubMed  Google Scholar 

  2. Miller H, Miller B, Ryan SJ (1986) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci 27:1644–1652

    PubMed  CAS  Google Scholar 

  3. Sakamoto T, Sakamoto H, Hinton DR, Spee C, Ishibashi T, Ryan SJ (1995) In vitro studies of human choroidal endothelial cells. Curr Eye Res 14:621–627. doi:10.3109/02713689508998488

    Article  PubMed  CAS  Google Scholar 

  4. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221. doi:10.1016/S1350-9462(99)00009-9

    Article  PubMed  CAS  Google Scholar 

  5. Ng EW, Adamis AP (2005) Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol 40:352–368

    PubMed  Google Scholar 

  6. Ni M, Holland M, Jarstadmarken H, De Vries G (2005) Time-course of experimental choroidal neovascularization in Dutch-Belted rabbit: clinical and histological evaluation. Exp Eye Res 81:286–297

    PubMed  CAS  Google Scholar 

  7. Gibran SK, Sachdev A, Stappler T, Newsome R, Wong D, Hiscott P (2007) Histological findings of a choroidal neovascular membrane removed at the time of macular translocation in a patient previously treated with intravitreal bevacizumab treatment (Avastin). Br J Ophthalmol 91:602–604. doi:10.1136/bjo.2006.108795

    Article  PubMed  CAS  Google Scholar 

  8. Casaroli-Marano RP, Pagan R, Vilaro S (1999) Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:2062–2072

    PubMed  CAS  Google Scholar 

  9. Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405

    PubMed  CAS  Google Scholar 

  10. Schlunck G, Martin G, Agostini HT, Camatta G, Hansen LL (2002) Cultivation of retinal pigment epithelial cells from human choroidal neovascular membranes in age related macular degeneration. Exp Eye Res 74:571–576. doi:10.1006/exer.2001.1148

    Article  PubMed  CAS  Google Scholar 

  11. Stahl A, Paschek L, Martin G, Gross NJ, Feltgen N, Hansen LL, Agostini HT (2008) Rapamycin reduces VEGF expression in retinal pigment epithelium (RPE) and inhibits RPE-induced sprouting angiogenesis in vitro. FEBS Lett 582:3097–3102. doi:10.1016/j.febslet.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  12. Korff T, Augustin HG (1998) Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143:1341–1352. doi:10.1083/jcb.143.5.1341

    Article  PubMed  CAS  Google Scholar 

  13. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(Pt 19):3249–3258

    PubMed  CAS  Google Scholar 

  14. Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10:1536–1547

    PubMed  CAS  Google Scholar 

  15. Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, de Jong PT (1997) Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 81:154–162. doi:10.1136/bjo.81.2.154

    Article  PubMed  CAS  Google Scholar 

  16. Otani A, Takagi H, Oh H, Koyama S, Matsumura M, Honda Y (1999) Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1912–1920

    PubMed  CAS  Google Scholar 

  17. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155:421–428

    PubMed  CAS  Google Scholar 

  18. Ishigooka H, Aotaki-Keen AE, Hjelmeland LM (1992) Subcellular localization of bFGF in human retinal pigment epithelium in vitro. Exp Eye Res 55:203–214. doi:10.1016/0014-4835(92)90184-T

    Article  PubMed  CAS  Google Scholar 

  19. Amin R, Puklin JE, Frank RN (1994) Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 35:3178–3188

    PubMed  CAS  Google Scholar 

  20. Reddy VM, Zamora RL, Kaplan HJ (1995) Distribution of growth factors in subfoveal neovascular membranes in age-related macular degeneration and presumed ocular histoplasmosis syndrome. Am J Ophthalmol 120:291–301

    PubMed  CAS  Google Scholar 

  21. Martin G, Schlunck G, Hansen LL, Agostini HT (2004) Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 242:321–326. doi:10.1007/s00417-003-0838-y

    Article  PubMed  CAS  Google Scholar 

  22. Chen CY, Wong TY, Heriot WJ (2007) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration: a short-term study. Am J Ophthalmol 143:510–512. doi:10.1016/j.ajo.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  23. Giansanti F, Virgili G, Bini A, Rapizzi E, Giacomelli G, Donati MC, Verdina T, Menchini U (2007) Intravitreal bevacizumab therapy for choroidal neovascularization secondary to age-related macular degeneration: 6-month results of an open-label uncontrolled clinical study. Eur J Ophthalmol 17:230–237

    PubMed  CAS  Google Scholar 

  24. Emerson MV, Lauer AK, Flaxel CJ, Wilson DJ, Francis PJ, Stout JT, Emerson GG, Schlesinger TK, Nolte SK, Klein ML (2007) Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration. Retina 27:439–444. doi:10.1097/IAE.0b013e31804b3e15

    Article  PubMed  Google Scholar 

  25. McLeod DS, Taomoto M, Otsuji T, Green WR, Sunness JS, Lutty GA (2002) Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 43:1986–1993

    PubMed  Google Scholar 

  26. Rosenthal R, Strauss O (2003) Investigations of RPE cells of choriodal neovascular membranes from patients with age-related macula degeneration. Adv Exp Med Biol 533:107–113

    PubMed  CAS  Google Scholar 

  27. Rosenthal R, Heimann H, Agostini H, Martin G, Hansen LL, Strauss O (2007) Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Mol Vis 13:443–456

    PubMed  CAS  Google Scholar 

  28. Hunt RC, Davis AA (1990) Altered expression of keratin and vimentin in human retinal pigment epithelial cells in vivo and in vitro. J Cell Physiol 145:187–199. doi:10.1002/jcp.1041450202

    Article  PubMed  CAS  Google Scholar 

  29. Stahl A, Wu X, Wenger A, Klagsbrun M, Kurschat P (2005) Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett 579:5338–5342. doi:10.1016/j.febslet.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  30. Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457. doi:10.1096/fj.00-0139com

    Article  PubMed  CAS  Google Scholar 

  31. Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532. doi:10.1182/blood-2006-08-041970

    Article  PubMed  CAS  Google Scholar 

  32. Geisen P, McColm JR, Hartnett ME (2006) Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res 82:608–619. doi:10.1016/j.exer.2005.08.021

    Article  PubMed  CAS  Google Scholar 

  33. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104:967–972. doi:10.1073/pnas.0607542104

    Article  PubMed  CAS  Google Scholar 

  34. Castellon R, Hamdi HK, Sacerio I, Aoki AM, Kenney MC, Ljubimov AV (2002) Effects of angiogenic growth factor combinations on retinal endothelial cells. Exp Eye Res 74:523–535. doi:10.1006/exer.2001.1161

    Article  PubMed  CAS  Google Scholar 

  35. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969

    PubMed  CAS  Google Scholar 

  36. Spaide RF (2006) Rationale for combination therapies for choroidal neovascularization. Am J Ophthalmol 141:149–156. doi:10.1016/j.ajo.2005.07.025

    Article  PubMed  Google Scholar 

  37. Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD (1995) Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 92:11–14

    PubMed  CAS  Google Scholar 

  38. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673. doi:10.1083/jcb.141.7.1659

    Article  PubMed  CAS  Google Scholar 

  39. Zubilewicz A, Hecquet C, Jeanny JC, Soubrane G, Courtois Y, Mascarelli F (2001) Two distinct signalling pathways are involved in FGF2-stimulated proliferation of choriocapillary endothelial cells: a comparative study with VEGF. Oncogene 20:1403–1413. doi:10.1038/sj.onc.1204231

    Article  PubMed  CAS  Google Scholar 

  40. Im E, Kazlauskas A (2006) Regulating angiogenesis at the level of PtdIns-4,5-P2. EMBO J 25:2075–2082. doi:10.1038/sj.emboj.7601100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Beatrix Flügel, Renate Buchen and Anne Mattes for excellent technical support. This work was supported by funding from the Forschungskommission Freiburg (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjürgen T. Agostini.

Additional information

None of the authors has financial relationships with companies or organisations mentioned in the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, A., Paschek, L., Martin, G. et al. Combinatory inhibition of VEGF and FGF2 is superior to solitary VEGF inhibition in an in vitro model of RPE-induced angiogenesis. Graefes Arch Clin Exp Ophthalmol 247, 767–773 (2009). https://doi.org/10.1007/s00417-009-1058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1058-x

Keywords

Navigation