Skip to main content

Advertisement

Log in

Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Around one million people are affected by adenoviral keratoconjunctivitis a year in Japan, and it is recognized as one of the major pathogens of ophthalmological nosocomial infection worldwide. Although cidofovir can be used systemically for immunocompromised patients with disseminated adenoviral infection, no specific anti-adenoviral agent has been established for the treatment of adenoviral infection. We evaluated the anti-adenoviral effect of anti-HIV (human immunodeficiency virus) agents in this study.

Methods

Five anti-HIV agents (zalcitabine, stavudine, nevirapine, indinavir and amprenavir) were subjected to in vitro evaluation. A549 cells were used for viral cell culture, and adenovirus serotypes 3, 4, 8, 19 and 37 were used. After calculating CC50 (50% cytotoxic concentration) of each agent by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we cultured adenovirus with the agents for seven days and quantitatively measured extracted adenoviral DNA by real-time PCR.

Results

Among the anti-HIV drugs, zalcitabine and stavudine, both nucleoside reverse transcriptase inhibitors, showed significant anti-adenoviral activity. In contrast, nevirapine, a non-nucleoside reverse transcriptase inhibitor, and indinavir and amprenavir, which are both protease inhibitors, were ineffective against adenovirus.

Conclusions

These results indicate that zalcitabine and stavudine are possible candidates for the local and systemic treatment of adenoviral infection, and the anti-adenoviral effect might depend on the pharmacological properties of anti-HIV agents. The chemical properties on the clinical safety for systemic and local application need to be determined in order to for these drugs to be accepted for the treatment of adenovirus in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bordigoni P, Carret AS, Venard V, Witz F, Le Faou A (2001) Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 32:1290–1297

    Article  PubMed  CAS  Google Scholar 

  2. Bruno B, Gooley T, Hackman RC, Davis C, Corey L, Boeckh M (2003) Adenovirus infection in hematopoietic stem cell transplantation: effect of ganciclovir and impact on survival. Biol Blood Marrow Transplant 9:341–352

    Article  PubMed  Google Scholar 

  3. Cotton M, Weber JM (1995) The adenovirus protease is required for virus into host cells. Virology 213:494–502

    Article  Google Scholar 

  4. D’Cruz OJ, Uckun FM (2005) Stampidine: a selective oculo-genital microbicide. J Antimicrob Chemother 56:10–19

    Article  PubMed  CAS  Google Scholar 

  5. De Jong JC, Wermenbol AG, Verweij-Uijterwaal MW, Slaterus KW, Wertheim-Van Dillen P, Van Doornum GJ, Khoo SH, Hierholzer JC (1999) Adenoviruses from human immunodeficiency virus-infected individuals, including two strains that represent new candidate serotypes Ad50 and Ad51 of species B1 and D, respectively. J Clin Microbiol 37:3940–3945

    PubMed  Google Scholar 

  6. De Oliveira B, Stevenson D, LaBree L, McDonnel PJ, Trousdale MD (1996) Evaluation of cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antiviral Res 31:165–172

    Article  PubMed  Google Scholar 

  7. Ford E, Nelson KE, Warren E (1987) Epidemiology of epidemic keratoconjunctivitis. Epidemiol Rev 9:244–261

    PubMed  CAS  Google Scholar 

  8. Gavin PJ, Katz BZ (2002) Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children. Pediatrics 110:1–8

    Article  Google Scholar 

  9. Gordon YG, Romanowski EG, Araullo-Cruz TP, Seaberg L, Erzurum S, Tolman R, De Clercq E (1991) Inhibitory effect of (S)-HPMPC, (S)-HPMPA, and 2′-nor-cyclic-GMP on clinical ocular adenoviral isolates is serotype-dependent in vitro. Antiviral Res 16:11–16

    Article  PubMed  CAS  Google Scholar 

  10. Gordon YG, Romanowski EG, Araullo-Cruz TP (1994) Topical HPMPC inhibits adenovirus type 5 in the New Zealand rabbit ocular replication model. Invest Ophthalmol Vis Sci 35:4135–4143

    PubMed  CAS  Google Scholar 

  11. Green M, Pina M (1964) Biochemical studies an adenovirus multiplication, VI. Properties of highly purified tumorigenic human adenoviruses and their DNA’s. Proc Natl Acad Sci USA 51:1251–1259

    Article  PubMed  CAS  Google Scholar 

  12. Hoffman JA, Shah AJ, Ross LA, Kapoor N (2001) Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7:388–394

    Article  PubMed  CAS  Google Scholar 

  13. Jernigan JA, Lowry BS, Hayden FG, Kyger SA, Conway BP, Groschel DH, Farr BM (1993) Adenovirus type 8 epidemic keratoconjunctivitis in an eye clinic: risk factors and control. J Infect Dis 167:1307–1313

    PubMed  CAS  Google Scholar 

  14. Kapelushnik J, Or R, Delukina M, Nagler A, Livni N, Engelhard D (1995) Intravenous ribavirin therapy for adenovirus gastroenteritis after bone marrow transplantation. J Pediatr Gastroenterol Nutr 21:110–112

    Article  PubMed  CAS  Google Scholar 

  15. Kakuda TN (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22:685–708

    Article  PubMed  CAS  Google Scholar 

  16. Kaneko H, Kato K, Mori S, Shigeta S (2001) Antiviral activity of NMSO3 against adenovirus in vitro. Antivir Res 52:281–288

    Article  PubMed  CAS  Google Scholar 

  17. Kimura T, Mori S, Tomita K, Ohno K, Takahashi K, Shigeta S, Terada M (2000) Antiviral activity of NMSO3 against respiratory syncytial virus infection in vitro and in vivo. Antiviral Res 47:41–51

    Article  PubMed  CAS  Google Scholar 

  18. Kinchington PR, Turse SE, Kowalski RP, Gordon YJ (1994) Use of polymerase chain amplification reaction for the detection of adenoviruses in ocular swab specimens. Invest Ophthalmol Vis Sci 35:4126–4134

    PubMed  CAS  Google Scholar 

  19. Lankester AC, Heemskerk B, Claas EC, Schilham MW, Beersma MF, Bredius RG, van Tol MJ, Kroes AC (2004) Effect of ribavirin on the plasma viral DNA load in patients with disseminating adenovirus infection. Clin Infect Dis 38:1521–1525

    Article  PubMed  CAS  Google Scholar 

  20. Legrand F, Berrebi D, Houhou N, Freymuth F, Faye A, Duval M, Mougenot JF, Peuchmaur M, Vilmer E (2001) Early diagnosis of adenovirus infection and treatment with cidofovir after bone marrow transplantation in children. Bone Marrow Transplant 27:621–626

    Article  PubMed  CAS  Google Scholar 

  21. Maslo C, Girard P, Urban T, Guessant S, Rozenbaum W (1997) Ribavirin therapy for adenovirus pneumonia in an AIDS patient. Am J Crit Care Med 156:1263–1264

    CAS  Google Scholar 

  22. Mentel R, Kinder M, Wegner U, Janta-Lipinski M, Matthes E (1997) Inhibitory activity of 3′-fluoro-2′-deoxythymidine and related nucleoside analogues against adenovirus in vitro. Antiviral Res 34:113–119

    Article  PubMed  CAS  Google Scholar 

  23. Mentel R, Wegner U (2000) Evaluation of the efficacy of 2′,3′-dideoxycydine against adenovirus infection in a mouse pneumonia model. Antiviral Res 47:79–87

    Article  PubMed  CAS  Google Scholar 

  24. Mentel R, Kurek S, Wegner U, Janta-Lipinski M, Gurtler L, Matthes E (2000) Inhibition of adenovirus DNA polymerase by modified nucleoside triphosphate analogs correlate with their antiviral effects on cellular level. Med Microbiol Immunol (Berl) 189:91–95

    Article  CAS  Google Scholar 

  25. Mitsuya H, Jarrett RF, Matsukura M, Di Marzo Veronese F, DeVico AL, Sarngadharan MG, Johns DG, Reitz MS, Broder S (1987) Long-term inhibition of human T-lymphotropic virus type III/lymphadenopathy-associated virus (human immunodeficiency virus) DNA synthesis and RNA expression in T cells protected by 2′,3′-dideoxynuculoosides in vitro. Proc Natl Acad Sci USA 84:2033–2037

    Article  PubMed  CAS  Google Scholar 

  26. Monkemuller KE, Wilcox CM (2000) Esophageal ulcer caused by cytomegalovirus: resolution during combination antiretroviral therapy for acquired immunodeficiency syndrome. South Med J 93: 818–820

    PubMed  CAS  Google Scholar 

  27. Morfin F, Dupuis-Girod S, Mundweiler S, Falcon D, Carrington D, Sedlacek P, Bierings M, Cetkovsky P, Kroes AC, van Tol MJ, Thouvenot D (2005) In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir Ther 10:225–229

    PubMed  CAS  Google Scholar 

  28. Murphy GF, Wood DP, McRoberts JW, Henslee-Downey PJ (1993) Adenovirus-associated hemorrhagic cystitis treated with intravenous ribavirin. J Urol 149:565–566

    PubMed  CAS  Google Scholar 

  29. Naesens L, Lenaerts L, Andrei G, Snoeck R, Van Beers D, Hol A, Balzarini J, De Clercq E (2005) Antiadenovirus activities of several classes of nucleoside and nucleotide analogues. Antimicrob Agents Chemother 49:1010–1016

    Article  PubMed  CAS  Google Scholar 

  30. O’Donnell B, McCruden EA, Desselberger U (1993) Molecular epidemiology of adenovirus conjunctivitis in Glasgow 1981–1991. Eye 7:8–14

    PubMed  Google Scholar 

  31. Romanowski EG, Gordon YJ (2000) Efficacy of topical cidofovir on multiple adenoviral serotypes in the New Zealand rabbit ocular model. Invest Ophthalmol Vis Sci 41:460–463

    PubMed  CAS  Google Scholar 

  32. Simpson DM, Tagliati M (1995) Nucleoside analogue-associated peripheral neuropathy in human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 9:153–161

    PubMed  CAS  Google Scholar 

  33. Sircar S, Ruzindana-Umunyana A, Neugebauer W, Weber JM (1998) Adenovirus endopeptidase and papain are inhibited by the same agents. Antivir Res 40:45–51

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka-Yokogui K, Itoh N, Usui N, Takeuchi S, Uchio E, Aoki K, Usui M, Ohno S (2001) New genome type of adenovirus serotype 19 causing nosocomial infections of epidemic keratoconjunctivitis in Japan. J Med Virol 65:530–533

    Article  PubMed  CAS  Google Scholar 

  35. Trousdale MD, Goldschmidt PL, Nobrega R (1994) Activity of ganciclovir against human adenovirus type-5 infection in cell culture and cotton rat eyes. Cornea 13:435–439

    Article  PubMed  CAS  Google Scholar 

  36. van der Vliet PC, Kwant MM (1981) Role of DNA polymerase gamma in adenovirus DNA replication. Mechanism of inhibition by 2′,3′-dideoxynucleoside 5′-triphosphates. Biochemistry 20:2628–2632

    Article  PubMed  Google Scholar 

  37. Wadell G, de Jong JC (1980) Restriction endonucleases in identification of a genome type of adenovirus 19 associated with keratoconjunctivitis. Infect Immun 27:292–296

    PubMed  CAS  Google Scholar 

  38. Wadell G, Hammarskjold ML, Winberg G, Varsanyi TM, Sundell G (1980) Genetic variability of adenoviruses. Ann N Y Acad Sci 354:16–42

    Article  PubMed  CAS  Google Scholar 

  39. Wadell G (1984) Molecular epidemiology of human adenoviruses. Curr Top Microbiol Immunol 110:191–220

    PubMed  CAS  Google Scholar 

  40. Walls T, Shankar AG, Shingadia D (2003) Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients. Lancet Infect Dis 3:79–86

    Article  PubMed  Google Scholar 

  41. Zarraga AL, Kerns FT, Kitchen LW (1992) Adenovirus pneumonia with severe sequelae in an immunocompetent adult. Clin Infect Dis 15:712–713

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Encouragement of Scientists (18591944) from the Ministry of Education, Science, Sports and Culture of Japan. We thank Dr. W. Gray for editing this manuscript.

The authors have no financial relationship with the organization that sponsored the research. The authors have full control of all primary data and agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Uchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchio, E., Fuchigami, A., Kadonosono, K. et al. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 245, 1319–1325 (2007). https://doi.org/10.1007/s00417-006-0523-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0523-z

Keywords

Navigation