Skip to main content

Advertisement

Log in

The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The majority of studies on the retina-specific ATP-binding cassette transporter (ABCA4) gene have focussed on molecular genetic analysis; comparatively few studies have described the clinical aspects of ABCA4-associated retinal disorders. In this study, we demonstrate the spectrum of retinal dystrophies associated with ABCA4 gene mutations.

Methods

Nine well-documented patients representing distinct phenotypes in the continuum of ABCA4-related disorders were selected. All patients received an extensive ophthalmologic evaluation, including kinetic perimetry, fluorescein angiography, and electroretinography (ERG). Mutation analysis had been performed previously with the genotyping microarray (ABCR400 chip) and/or single-strand conformation polymorphism analysis in combination with direct DNA sequencing.

Results

In all patients, at least one pathologic ABCA4 mutation was identified. Patient 10034 represented the mild end of the phenotypic spectrum, demonstrating exudative age-related macular degeneration (AMD). Patient 24481 received the diagnosis of late-onset fundus flavimaculatus (FFM), patient 15168 demonstrated the typical FFM phenotype, and patient 19504 had autosomal recessive Stargardt disease (STGD1). Patients 11302 and 7608 exhibited progression from FFM/STGD1 to cone–rod dystrophy (CRD). A more typical CRD phenotype was found in patients 15680 and 12608. Finally, the most severe ABCA4-associated phenotype was retinitis pigmentosa (RP) in patient 11366. This phenotype was characterised by extensive atrophy with almost complete loss of peripheral and central retinal functions.

Conclusion

We describe nine patients during different stages of disease progression; together, these patients form a continuum of ABCA4-associated phenotypes. Besides characteristic disorders such as FFM/STGD1, CRD and RP, intermediate phenotypes may be encountered. Moreover, as the disease progresses, marked differences may be observed between initially comparable phenotypes. In contrast, distinctly different phenotypes may converge to a similar final stage, characterised by extensive chorioretinal atrophy and very low visual functions. The identified ABCA4 mutations in most, but not all, patients were compatible with the resulting phenotypes, as predicted by the genotype–phenotype model for ABCA4-associated disorders. With the advent of therapeutic options, recognition by the general ophthalmologist of the various retinal phenotypes associated with ABCA4 mutations is becoming increasingly important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aaberg TM (1986) Stargardt’s disease and fundus flavimaculatus: evaluation of morphologic progression and intrafamilial co-existence. Trans Am Ophthalmol Soc 84:453–487

    CAS  PubMed  Google Scholar 

  2. Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67:487–491

    CAS  PubMed  Google Scholar 

  3. Allikmets R (2000) Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet 67:793–799

    CAS  PubMed  Google Scholar 

  4. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807

    Article  CAS  PubMed  Google Scholar 

  5. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Google Scholar 

  6. Birch DG, Peters AY, Locke KL, Spencer R, Megarity CF, Travis GH (2001) Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4(ABCR) gene. Exp Eye Res 73:877–886

    CAS  PubMed  Google Scholar 

  7. Cremers FPM, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362

    CAS  PubMed  Google Scholar 

  8. De La Paz MA, Guy VK, Abou-Donia S, Heinis R, Bracken B, Vance JM, Gilbert JR, Gass JD, Haines JL, Pericak-Vance MA (1999) Analysis of the Stargardt disease gene (ABCR) in age-related macular degeneration. Ophthalmology 106:1531–1536

    Google Scholar 

  9. Ducroq D, Rozet JM, Gerber S, Perrault I, Barbet D, Hanein S, Hakiki S, Dufier JL, Munnich A, Hamel C, Kaplan J (2002) The ABCA4 gene in autosomal recessive cone-rod dystrophies. Am J Hum Genet 71:1480–1482

    CAS  PubMed  Google Scholar 

  10. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  CAS  PubMed  Google Scholar 

  11. Fishman GA (1976) Fundus flavimaculatus. A clinical classification. Arch Ophthalmol 94:2061–2067

    Google Scholar 

  12. Fishman GA, Stone EM, Eliason DA, Taylor CM, Lindeman M, Derlacki DJ (2003) ABCA4 gene sequence variations in patients with autosomal recessive cone-rod dystrophy. Arch Ophthalmol 121:851–855

    Google Scholar 

  13. Franceschetti A (1965) A special form of tapetoretinal degeneration: fundus flavimaculatus. Trans Am Acad Ophthalmol Otolaryngol 69:1048–1053

    CAS  PubMed  Google Scholar 

  14. Fukui T, Yamamoto S, Nakano K, Tsujikawa M, Morimura H, Nishida K, Ohguro N, Fujikado T, Irifune M, Kuniyoshi K, Okada AA, Hirakata A, Miyake Y, Tano Y (2002) ABCA4 gene mutations in Japanese patients with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci 43:2819–2824

    Google Scholar 

  15. Gelisken O, De Laey JJ (1985) A clinical review of Stargardt’s disease and/or fundus flavimaculatus with follow-up. Int Ophthalmol 8:225–235

    CAS  PubMed  Google Scholar 

  16. Gerber S, Rozet JM, van de Pol TJ, Hoyng CB, Munnich A, Blankenagel A, Kaplan J, Cremers FP (1998) Complete exon–intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics 48:139–142

    CAS  PubMed  Google Scholar 

  17. Gerth C, Andrassi-Darida M, Bock M, Preising MN, Weber BH, Lorenz B (2002) Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype–phenotype correlation. Graefes Arch Clin Exp Ophthalmol 240:628–638

    Article  PubMed  Google Scholar 

  18. Guymer RH, Heon E, Lotery AJ, Munier FL, Schorderet DF, Baird PN, McNeil RJ, Haines H, Sheffield VC, Stone EM (2001) Variation of codons 1961 and 2177 of the Stargardt disease gene is not associated with age-related macular degeneration. Arch Ophthalmol 119:745–751

    Google Scholar 

  19. Hadden OB, Gass JD (1976) Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol 82:527–539

    Google Scholar 

  20. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC, Testa F, Maugeri A, Hoyng CB, Gouras P, Simonelli F, Lewis RA, Lupski JR, Cremers FP, Allikmets R (2003) Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat 22:395–403

    CAS  PubMed  Google Scholar 

  21. Klevering BJ, Blankenagel A, Maugeri A, Cremers FPM, Hoyng CB, Rohrschneider K (2002) Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene. Invest Ophthalmol Vis Sci 43:1980–1985

    Google Scholar 

  22. Klevering BJ, Maugeri A, Wagner A, Go SL, Vink C, Cremers FP, Hoyng CB (2004) Three families displaying the combination of Stargardt disease with cone-rod dystrophy or retinitis pigmentosa. Ophthalmology 111:546–553

    Google Scholar 

  23. Klevering BJ, van Driel M, van de Pol DJ, Pinckers AJ, Cremers FPM, Hoyng CB (1999) Phenotypic variations in a family with retinal dystrophy as result of different mutations in the ABCR gene. Br J Ophthalmol 83:914–918

    Google Scholar 

  24. Klevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, Jaakson K, van den Born LI, Maugeri A, Hoyng CB, Cremers FPM (2004) Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet 12:1024–1032

    Google Scholar 

  25. Klien BA, Krill AE (1967) Fundus flavimaculatus. Clinical, functional and histopathologic observations. Am J Ophthalmol 64:3–23

    PubMed  Google Scholar 

  26. Krill AE, Deutman AF (1972) The various categories of juvenile macular degeneration. Trans Am Ophthalmol Soc 70:220–245

    CAS  PubMed  Google Scholar 

  27. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M (1999) Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 64:422–434

    CAS  PubMed  Google Scholar 

  28. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC (2001) Phenotypic subtypes of Stargardt macular dystrophy—fundus flavimaculatus. Arch Ophthalmol 119:359–369

    Google Scholar 

  29. Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 97:143–156

    Google Scholar 

  30. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12

    Google Scholar 

  31. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    Google Scholar 

  32. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97:7154–7159

    CAS  PubMed  Google Scholar 

  33. Maugeri A, Klevering BJ, Rohrschneider K, Blankenagel A, Brunner HG, Deutman AF, Hoyng CB, Cremers FPM (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 67:960–966

    CAS  PubMed  Google Scholar 

  34. Maugeri A, van Driel MA, van de Pol DJ, Klevering BJ, van Haren FJ, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Dahl N, Brunner HG, Deutman AF, Hoyng CB, Cremers FP (1999) The 2588G→C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet 64:1024–1035

    CAS  PubMed  Google Scholar 

  35. Oh KT, Weleber RG, Oh DM, Billingslea AM, Rosenow J, Stone EM (2004) Clinical phenotype as a prognostic factor in Stargardt disease. Retina 24:254–262

    PubMed  Google Scholar 

  36. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci U S A 95:14609–14613

    CAS  PubMed  Google Scholar 

  37. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100:4742–4747

    CAS  PubMed  Google Scholar 

  38. Radu RA, Mata NL, Nusinowitz S, Liu X, Travis GH (2004) Isotretinoin treatment inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Novartis Found Symp 255:51–63

    PubMed  Google Scholar 

  39. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH (2000) A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 67:800–813

    CAS  PubMed  Google Scholar 

  40. Rozet JM, Gerber S, Ghazi I, Perrault I, Ducroq D, Souied E, Cabot A, Dufier JL, Munnich A, Kaplan J (1999) Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of clinical heterogeneity at this locus. J Med Genet 36:447–451

    CAS  PubMed  Google Scholar 

  41. Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I, Leowski C, Dufier JL, Munnich A, Kaplan J (1998) Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 6:291–295

    CAS  PubMed  Google Scholar 

  42. Rudolph G, Kalpadakis P, Haritoglou C, Rivera A, Weber BH (2002) Mutations in the ABCA4 gene in a family with Stargardt’s disease and retinitis pigmentosa (STGD1/RP19). Klin Monatsbl Augenheilkd 219:590–596

    PubMed  Google Scholar 

  43. Schmidt S, Postel EA, Agarwal A, Allen IC Jr, Walters SN, De La Paz MA, Scott WK, Haines JL, Pericak-Vance MA, Gilbert JR (2003) Detailed analysis of allelic variation in the ABCA4 gene in age-related maculopathy. Invest Ophthalmol Vis Sci 44:2868–2875

    Google Scholar 

  44. Schutt F, Bergmann M, Holz FG, Kopitz J (2002) Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol 240:983–988

    PubMed  Google Scholar 

  45. Shroyer NF, Lewis RA, Yatsenko AN, Lupski JR (2001) Null missense ABCR (ABCA4) mutations in a family with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci 42:2757–2761

    Google Scholar 

  46. Sieving PA, Chaudhry P, Kondo M, Provenzano M, Wu D, Carlson TJ, Bush RA, Thompson DA (2001) Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc Natl Acad Sci U S A 98:1835–1840

    CAS  PubMed  Google Scholar 

  47. Simonelli F, Testa F, Zernant J, Nesti A, Rossi S, Rinaldi E, Allikmets R (2004) Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family. Ophthalmic Res 36:82–88

    CAS  PubMed  Google Scholar 

  48. Souied EH, Ducroq D, Gerber S, Ghazi I, Rozet JM, Perrault I, Munnich A, Dufier JL, Coscas G, Soubrane G, Kaplan J (1999) Age-related macular degeneration in grandparents of patients with Stargardt disease: genetic study. Am J Ophthalmol 128:173–178

    Google Scholar 

  49. Souied EH, Ducroq D, Rozet JM, Gerber S, Perrault I, Munnich A, Coscas G, Soubrane G, Kaplan J (2000) ABCR gene analysis in familial exudative age-related macular degeneration. Invest Ophthalmol Vis Sci 41:244–247

    Google Scholar 

  50. Souied EH, Ducroq D, Rozet JM, Gerber S, Perrault I, Sterkers M, Benhamou N, Munnich A, Coscas G, Soubrane G, Kaplan J (1999) A novel ABCR nonsense mutation responsible for late-onset fundus flavimaculatus. Invest Ophthalmol Vis Sci 40:2740–2744

    Google Scholar 

  51. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    Google Scholar 

  52. Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60:327–346

    CAS  Google Scholar 

  53. Stone EM, Webster AR, Vandenburgh K, Streb LM, Hockey RR, Lotery AJ, Sheffield VC (1998) Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nat Genet 20:328–329

    Google Scholar 

  54. Suarez T, Biswas SB, Biswas EE (2002) Biochemical defects in retina-specific human ATP binding cassette transporter nucleotide binding domain 1 mutants associated with macular degeneration. J Biol Chem 277:21759–21767

    CAS  PubMed  Google Scholar 

  55. Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281

    CAS  PubMed  Google Scholar 

  56. Sun H, Nathans J (2001) ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease. J Biol Chem 276:11766–11774

    CAS  PubMed  Google Scholar 

  57. Sun H, Smallwood PM, Nathans J (2000) Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 26:242–246

    Google Scholar 

  58. Thijssen JM, Pinckers A, Otto AJ (1974) A multipurpose optical system for ophthalmic electrodiagnosis. Ophthalmologica 168:308–314

    CAS  PubMed  Google Scholar 

  59. van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FPM (1998) ABCR unites what ophthalmologists divide(s). Ophthalmic Genet 19:117–122

    Google Scholar 

  60. Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, Beck G, Fishman GA, Lam BL, Levin A, Heckenlively JR, Jacobson SG, Weleber RG, Sheffield VC, Stone EM (2001) An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42:1179–1189

    Google Scholar 

  61. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    CAS  PubMed  Google Scholar 

  62. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR (2001) Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 108:346–355

    CAS  PubMed  Google Scholar 

  63. Zhang K, Kniazeva M, Hutchinson A, Han M, Dean M, Allikmets R (1999) The ABCR gene in recessive and dominant Stargardt diseases: a genetic pathway in macular degeneration. Genomics 60:234–237

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. L.I. van den Born for the referral and the ophthalmologic data of patient 15680. K. van der Donk and Dr. L.H. Hoefsloot are acknowledged for their assistance in the molecular analysis of the ABCA4 gene of patient 24481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jeroen Klevering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klevering, B.J., Deutman, A.F., Maugeri, A. et al. The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefe's Arch Clin Exp Ophthalmol 243, 90–100 (2005). https://doi.org/10.1007/s00417-004-1079-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-1079-4

Keywords

Navigation