Skip to main content
Log in

Comprehensive pathological and genetic investigation of three young adult myotonic dystrophy type 1 patients with sudden unexpected death

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objectives

The mechanism and pathological substrate of arrhythmogenic events in dystrophic myopathy type 1 (DM1) have not been fully established, especially for patients without progression of motor and/or cardiac disability. Therefore, we aimed to clarify the pathological appearance and genetic factors, other than CTG repeats in DMPK, associated with sudden cardiac death in patients with DM1.

Methods

A pathological investigation including the cardiac conduction system in the heart and whole-exome sequencing was conducted for three young adults (Patient 1; 25-year-old female, Patient 2; 35-year-old female, Patient 3; 18-year-old male) with DM1 who suffered sudden death.

Results

Only Patient 1 showed abnormal electrocardiogram findings before death. The pathological investigation showed severe fibrosis of the atrioventricular conduction system in Patient 1 and severe fatty infiltration in the right ventricle in Patient 2. Several minimal necrotic/inflammatory foci were found in both patients. Patient 3 showed no significant pathological findings. A genetic investigation showed CORIN_p.W813* and MYH2_p. R793* in Patient 1, KCNH2_p. V794D and PLEC_p. A4147T in Patient 2, and SCN5A_p.E428K and SCN3B_ p.V145L in Patient 3 as highly possible pathogenic variants.

Conclusion and relevance

The present study showed varied heart morphology in young adults with DM1 and sudden death. Synergistic effects of various genetic factors other than CTG repeats may increase the risk of sudden cardiac death in DM1 patients, even if signs of cardiac and skeletal muscle involvement are mild. Comprehensive genetic investigations, other than CTG repeat assessment, may be useful to estimate the risk of sudden cardiac death in DM1 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the results of this study are available from the corresponding author upon reasonable request.

References

  1. The International Myotonic Dystrophy Consortium (IDMC) (2000) New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). Neurology 54:1218–1221

    Article  Google Scholar 

  2. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373

    Article  CAS  PubMed  Google Scholar 

  3. Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA (2016) J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm 13:e295-324

    Article  PubMed  PubMed Central  Google Scholar 

  4. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M (1996) Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94:983–991

    Article  CAS  PubMed  Google Scholar 

  5. Bui AH, Roujol S, Foppa M, Kissinger KV, Goddu B, Hauser TH, Zimetbaum PJ, Ngo LH, Manning WJ, Nezafat R, Delling FN (2017) Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart 103:204–209

    Article  PubMed  Google Scholar 

  6. Burke AP, Farb A, Tashko G, Virmani R (1998) Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? Circulation 97:1571–1580

    Article  CAS  PubMed  Google Scholar 

  7. Christensen AH, Bundgaard H, Schwartz M, Hansen SH, Svendsen JH (2008) Cardiac myotonic dystrophy mimicking arrhythmogenic right ventricular cardiomyopathy in a young sudden cardiac death victim. Circ Arrhythm Electrophysiol 1:317–320

    Article  PubMed  Google Scholar 

  8. Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begre N, Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L, Fontao L (2011) Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur J Cell Biol 90:390–400

    Article  CAS  PubMed  Google Scholar 

  9. Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ, American Heart Association Pediatric Heart Failure Committee of the Council on Cardiovascular Disease in the Y, Council on Clinical C, Council on Cardiovascular R, Intervention, Council on Functional G, Translational B, Stroke C (2017) Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation 136:e200–e231

    Article  PubMed  Google Scholar 

  10. Fellmann F, van El CG, Charron P, Michaud K, Howard HC, Boers SN, Clarke AJ, Duguet AM, Forzano F, Kauferstein S, Kayserili H, Lucassen A, Mendes A, Patch C, Radojkovic D, Rial-Sebbag E, Sheppard MN, Tasse AM, Temel SG, Sajantila A, Basso C, Wilde AAM, Cornel MC, on behalf of European Society of Human Genetics ECoLMESoCwgom, pericardial diseases ERNfrlp, complex diseases of the heart AfECP (2019) European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet 27:1763–1773

    Article  PubMed  PubMed Central  Google Scholar 

  11. Freyermuth F, Rau F, Kokunai Y, Linke T, Sellier C, Nakamori M, Kino Y, Arandel L, Jollet A, Thibault C, Philipps M, Vicaire S, Jost B, Udd B, Day JW, Duboc D, Wahbi K, Matsumura T, Fujimura H, Mochizuki H, Deryckere F, Kimura T, Nukina N, Ishiura S, Lacroix V, Campan-Fournier A, Navratil V, Chautard E, Auboeuf D, Horie M, Imoto K, Lee KY, Swanson MS, de Munain AL, Inada S, Itoh H, Nakazawa K, Ashihara T, Wang E, Zimmer T, Furling D, Takahashi MP, Charlet-Berguerand N (2016) Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 7:11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Groh WJ, Groh MR, Saha C, Kincaid JC, Simmons Z, Ciafaloni E, Pourmand R, Otten RF, Bhakta D, Nair GV, Marashdeh MM, Zipes DP, Pascuzzi RM (2008) Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 358:2688–2697

    Article  CAS  PubMed  Google Scholar 

  13. Hakim P, Thresher R, Grace AA, Huang CL (2010) Effects of flecainide and quinidine on action potential and ventricular arrhythmogenic properties in Scn3b knockout mice. Clin Exp Pharmacol Physiol 37:782–789

    CAS  PubMed  Google Scholar 

  14. Hamshere MG, Harley H, Harper P, Brook JD, Brookfield JF (1999) Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet 36:59–61

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hata Y, Hachiwaka R, Ichimata S, Yamaguchi Y, Nishida N (2022) An autopsy case of sudden unexpected death of a young adult with progressive intraventricular conduction delay. Pathol Res Pract 240:154226

    Article  PubMed  Google Scholar 

  16. Hata Y, Hirono K, Yamaguchi Y, Ichida F, Oku Y, Nishida N (2019) Minimal inflammatory foci of unknown etiology may be a tentative sign of early stage inherited cardiomyopathy. Mod Pathol 32:1281–1290

    Article  CAS  PubMed  Google Scholar 

  17. Hata Y, Ichimata S, Hirono K, Yamaguchi Y, Oku Y, Ichida F, Nishida N (2022) Pathological and comprehensive genetic investigation of autopsy cases of idiopathic bradyarrhythmia. Circ J 87:111–119

    Article  Google Scholar 

  18. Hata Y, Kinoshita K, Mizumaki K, Yamaguchi Y, Hirono K, Ichida F, Takasaki A, Mori H, Nishida N (2016) Postmortem genetic analysis of sudden unexplained death syndrome under 50 years of age: a next-generation sequencing study. Heart Rhythm 13:1544–1551

    Article  PubMed  Google Scholar 

  19. Hata Y, Yoshida K, Kinoshita K, Nishida N (2017) Epilepsy-related sudden unexpected death: targeted molecular analysis of inherited heart disease genes using next-generation DNA sequencing. Brain Pathol 27:292–304

    Article  CAS  PubMed  Google Scholar 

  20. Hermans MC, Faber CG, Bekkers SC, de Die-Smulders CE, Gerrits MM, Merkies IS, Snoep G, Pinto YM, Schalla S (2012) Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 14:48

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hong L, Zhang M, Ly OT, Chen H, Sridhar A, Lambers E, Chalazan B, Youn SW, Maienschein-Cline M, Feferman L, Ong SG, Wu JC, Rehman J, Darbar D (2021) Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Rep 16:1542–1554

    Article  CAS  Google Scholar 

  22. Hu D, Barajas-Martinez H, Burashnikov E, Springer M, Wu Y, Varro A, Pfeiffer R, Koopmann TT, Cordeiro JM, Guerchicoff A, Pollevick GD, Antzelevitch C (2009) A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ Cardiovasc Genet 2:270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kitzman DW, Scholz DG, Hagen PT, Ilstrup DM, Edwards WD (1988) Age-related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): a quantitative anatomic study of 765 specimens from subjects 20–99 years old. Mayo Clin Proc 63:137–146

    Article  CAS  PubMed  Google Scholar 

  24. Leyva F, Zegard A, Okafor O, Foley P, Umar F, Taylor RJ, Marshall H, Stegemann B, Moody W, Steeds RP, Halliday BP, Hammersley DJ, Jones RE, Prasad SK, Qiu T (2022) Myocardial fibrosis predicts ventricular arrhythmias and sudden death after cardiac electronic device implantation. J Am Coll Cardiol 79:665–678

    Article  PubMed  Google Scholar 

  25. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA (2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15:2087–2097

    Article  CAS  PubMed  Google Scholar 

  26. McBride D, Deshmukh A, Shore S, Elafros MA, Liang JJ (2022) Cardiac involvement and arrhythmias associated with myotonic dystrophy. Rev Cardiovasc Med 23:126

    Article  PubMed  PubMed Central  Google Scholar 

  27. Merino JL, Carmona JR, Fernandez-Lozano I, Peinado R, Basterra N, Sobrino JA (1998) Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation 98:541–546

    Article  CAS  PubMed  Google Scholar 

  28. Mondejar-Parreno G, Jahng JWS, Belbachir N, Wu BC, Zhang X, Perez MV, Badhwar N, Wu JC (2021) Generation of three heterozygous KCNH2 mutation-carrying human induced pluripotent stem cell lines for modeling LQT2 syndrome. Stem Cell Res 54:102402

    Article  CAS  PubMed  Google Scholar 

  29. Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi M, Krahe R, Monckton DG (2023) Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 32:621–631

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen HH, Wolfe JT 3rd, Holmes DR Jr, Edwards WD (1988) Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 11:662–671

    Article  CAS  PubMed  Google Scholar 

  31. Papa AA, Verrillo F, Scutifero M, Rago A, Morra S, Cassese A, Cioppa ND, Magliocca MCG, Galante D, Palladino A, Golino P, Politano L (2018) Heart transplantation in a patient with myotonic dystrophy type 1 and end-stage dilated cardiomyopathy: a short term follow-up. Acta Myol 37:267–271

    PubMed  PubMed Central  Google Scholar 

  32. Perez-Riera AR, Abreu LC, Yanowitz F, Barros RB, Femenia F, McIntyre WF, Baranchuk A (2012) “Benign” early repolarization versus malignant early abnormalities: clinical-electrocardiographic distinction and genetic basis. Cardiol J 19:337–346

    Article  PubMed  Google Scholar 

  33. Petri H, Vissing J, Witting N, Bundgaard H, Kober L (2012) Cardiac manifestations of myotonic dystrophy type 1. Int J Cardiol 160:82–88

    Article  PubMed  Google Scholar 

  34. Petri H, Witting N, Ersboll MK, Sajadieh A, Duno M, Helweg-Larsen S, Vissing J, Kober L, Bundgaard H (2014) High prevalence of cardiac involvement in patients with myotonic dystrophy type 1: a cross-sectional study. Int J Cardiol 174:31–36

    Article  PubMed  Google Scholar 

  35. Phillips MF, Harper PS (1997) Cardiac disease in myotonic dystrophy. Cardiovasc Res 33:13–22

    Article  CAS  PubMed  Google Scholar 

  36. Radvansky J, Ficek A, Minarik G, Palffy R, Kadasi L (2011) Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing. Diagn Mol Pathol 20:48–51

    Article  PubMed  Google Scholar 

  37. Rakocevic-Stojanovic V, Pavlovic S, Seferovic P, Vasiljevic J, Lavrnic D, Marinkovic Z, Apostolski S (1999) Pathohistological changes in endomyocardial biopsy specimens in patients with myotonic dystrophy. Panminerva Med 41:27–30

    CAS  PubMed  Google Scholar 

  38. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S (1994) Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol 267:C1723-1728

    Article  CAS  PubMed  Google Scholar 

  39. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ (2010) Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Heart Rhythm 7:771–778

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thorolfsdottir RB, Sveinbjornsson G, Sulem P, Helgadottir A, Gretarsdottir S, Benonisdottir S, Magnusdottir A, Davidsson OB, Rajamani S, Roden DM, Darbar D, Pedersen TR, Sabatine MS, Jonsdottir I, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K (2017) A missense variant in PLEC increases risk of atrial fibrillation. J Am Coll Cardiol 70:2157–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wahbi K, Furling D (2020) Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med 30:232–238

    Article  PubMed  Google Scholar 

  42. Wahbi K, Porcher R, Laforet P, Fayssoil A, Becane HM, Lazarus A, Sochala M, Stojkovic T, Behin A, Leonard-Louis S, Arnaud P, Furling D, Probst V, Babuty D, Pellieux S, Clementy N, Bassez G, Pereon Y, Eymard B, Duboc D (2018) Development and validation of a new scoring system to predict survival in patients with myotonic dystrophy type 1. JAMA Neurol 75:573–581

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang DW, Viswanathan PC, Balser JR, George AL Jr, Benson DW (2002) Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation 105:341–346

    Article  CAS  PubMed  Google Scholar 

  44. Wang P, Yang Q, Wu X, Yang Y, Shi L, Wang C, Wu G, Xia Y, Yang B, Zhang R, Xu C, Cheng X, Li S, Zhao Y, Fu F, Liao Y, Fang F, Chen Q, Tu X, Wang QK (2010) Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. Biochem Biophys Res Commun 398:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiche G, Osmanagic-Myers S, Castanon MJ (2015) Networking and anchoring through plectin: a key to IF functionality and mechanotransduction. Curr Opin Cell Biol 32:21–29

    Article  CAS  PubMed  Google Scholar 

  46. Winkel BG, Holst AG, Theilade J, Kristensen IB, Thomsen JL, Ottesen GL, Bundgaard H, Svendsen JH, Haunso S, Tfelt-Hansen J (2011) Nationwide study of sudden cardiac death in persons aged 1–35 years. Eur Heart J 32:983–990

    Article  PubMed  Google Scholar 

  47. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97:8525–8529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the JSPS KAKENHI (Grant number JP21H03211 to YH. and JP23H03759 to NN.). The authors thank Miyuki Maekawa, Misa Kusaba, and Osamu Yamamoto for their technical assistance. We thank Lisa Kreiner, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YH conceptualized the study, performed the pathological and genetic investigations, acquired the samples, and wrote the original draft of the manuscript. SH performed pathological investigations and visualization. KY summarized the neurological findings. YH and KH summarized the electrocardiogram findings. NN conceptualized the study, performed pathological investigations, acquired samples, and reviewed and wrote the original draft of the manuscript.

Corresponding author

Correspondence to Naoki Nishida.

Ethics declarations

Conflict of interest

None.

Ethics standard

All autopsies and neuropathological investigations were performed with written consent of the legal authority under the criminal code. Written consent was obtained from the next of kin or guardian for genetic investigations and publication of anonymized data obtained through clinical characterization and scientific research. This study was performed in accordance with the ethical standards established in the 1964 Declaration of Helsinki. All experimental protocols, including the use of pathological specimens obtained at autopsies for research upon anonymization, were approved by the official ethical institutional review board of the University of Toyama (I2020006).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hata, Y., Ichimata, S., Yoshida, K. et al. Comprehensive pathological and genetic investigation of three young adult myotonic dystrophy type 1 patients with sudden unexpected death. J Neurol 270, 5380–5391 (2023). https://doi.org/10.1007/s00415-023-11850-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11850-8

Keywords

Navigation