Skip to main content

Advertisement

Log in

How to diagnose and manage neurological toxicities of immune checkpoint inhibitors: an update

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

As the use of cancer immunotherapy with immune checkpoint inhibitors (ICIs) is expanding rapidly for the treatment of many tumor types, it is crucial that both neurologists and oncologists become familiar with the diagnosis and treatment of neurological immune-related adverse events (n-irAEs). These are rare complications, developing in their severe forms in only 1–3% of the patients, but are highly relevant due to their mortality and morbidity burden. The diagnosis of n-irAEs is—however—challenging, as many alternative diagnoses need to be considered in the complex scenario of a patient with advanced cancer developing neurological problems. A tailored diagnostic approach is advisable according to the presentation, clinical history, and known specificities of n-irAEs. Several patterns characterized by distinct clinical, immunological, and prognostic characteristics are beginning to emerge. For example, myasthenia gravis is more likely to develop after anti-programmed cell death protein 1 (PD-1) or anti-programmed cell death ligand 1 (PD-L1) treatment, while meningitis appears more frequently after anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) therapy. Also, peripheral neuropathy and Guillain–Barré syndrome seem to be more common in patients with an underlying melanoma. Central nervous system disorders (CNS) are less frequent and are more often associated with lung cancer, and some of them (especially those with limbic encephalitis and positive onconeural antibodies) have a poor prognosis. Herein, we provide an update of the recent advances in the diagnosis and treatment of neurological toxicities related to ICI use, focusing on the exclusion of alternative diagnoses, diagnostic specificities, and treatment of n-irAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data access, responsibility, and analysis

The Corresponding Author had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

  1. Marini A, Bernardini A, Gigli GL et al (2021) Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 96:754–766. https://doi.org/10.1212/WNL.0000000000011795

    Article  CAS  PubMed  Google Scholar 

  2. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaddepally RK, Kharel P, Pandey R et al (2020) Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). https://doi.org/10.3390/cancers12030738

    Article  Google Scholar 

  4. Dubey D, David WS, Reynolds KL et al (2020) Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol 87:659–669. https://doi.org/10.1002/ana.25708

    Article  PubMed  Google Scholar 

  5. Brahmer JR, Abu-Sbeih H, Ascierto PA et al (2021) Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer 9:e002435. https://doi.org/10.1136/jitc-2021-002435

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mahmood SS, Fradley MG, Cohen JV et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71:1755–1764. https://doi.org/10.1016/j.jacc.2018.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Graus F, Vogrig A, Muñiz-Castrillo S et al (2021) Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Santomasso BD (2020) Anticancer drugs and the nervous system. Continuum (Minneap Minn) 26:732–764. https://doi.org/10.1212/CON.0000000000000873

    Article  Google Scholar 

  9. Lee EQ (2020) Neurologic complications in patients with cancer. Continuum (Minneap Minn) 26:1629–1645. https://doi.org/10.1212/CON.0000000000000937

    Article  Google Scholar 

  10. Pruitt AA (2012) CNS infections in patients with cancer. Continuum (Minneap Minn) 18:384–405. https://doi.org/10.1212/01.CON.0000413665.80915.c4

    Article  Google Scholar 

  11. Le Rhun E, Taillibert S, Chamberlain MC (2013) Carcinomatous meningitis: leptomeningeal metastases in solid tumors. Surg Neurol Int 4:S265-288. https://doi.org/10.4103/2152-7806.111304

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muñiz-Castrillo S, Vogrig A, Honnorat J (2020) Associations between HLA and autoimmune neurological diseases with autoantibodies. Autoimmun Highlights 11:2. https://doi.org/10.1186/s13317-019-0124-6

    Article  Google Scholar 

  13. Chang H, Shin Y-W, Keam B et al (2020) HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann Clin Transl Neurol 7:2243–2250. https://doi.org/10.1002/acn3.51213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ali OH, Berner F, Bomze D et al (2019) Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur J Cancer 107:8–14. https://doi.org/10.1016/j.ejca.2018.11.009

    Article  CAS  Google Scholar 

  15. Manson G, Maria ATJ, Poizeau F et al (2019) Worsening and newly diagnosed paraneoplastic syndromes following anti-PD-1 or anti-PD-L1 immunotherapies, a descriptive study. J Immunother Cancer 7:337. https://doi.org/10.1186/s40425-019-0821-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vogrig A, Muñiz-Castrillo S, Desestret V et al (2020) Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors. Ther Adv Neurol Disord 13:1756286420932797. https://doi.org/10.1177/1756286420932797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guidon AC, Burton LB, Chwalisz BK et al (2021) Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J Immunother Cancer 9:e002890. https://doi.org/10.1136/jitc-2021-002890

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnson DB, Manouchehri A, Haugh AM et al (2019) Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J Immunother Cancer. https://doi.org/10.1186/s40425-019-0617-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vogrig A, Fouret M, Joubert B et al (2019) Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 6:e604. https://doi.org/10.1212/NXI.0000000000000604

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vogrig A, Muñiz-Castrillo S, Joubert B et al (2020) Central nervous system complications associated with immune checkpoint inhibitors. J Neurol Neurosurg Psychiatry 91:772–778. https://doi.org/10.1136/jnnp-2020-323055

    Article  PubMed  Google Scholar 

  21. Zell JA, Chang JC (2005) Neoplastic fever: a neglected paraneoplastic syndrome. Support Care Cancer 13:870–877. https://doi.org/10.1007/s00520-005-0825-4

    Article  PubMed  Google Scholar 

  22. Coureau M, Meert A-P, Berghmans T, Grigoriu B (2020) Efficacy and toxicity of immune -checkpoint inhibitors in patients with preexisting autoimmune disorders. Front Med (Lausanne) 7:137. https://doi.org/10.3389/fmed.2020.00137

    Article  Google Scholar 

  23. Shelly S, Triplett JD, Pinto MV et al (2020) Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun 2:fcaa181. https://doi.org/10.1093/braincomms/fcaa181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valencia-Sanchez C, Zekeridou A (2021) Paraneoplastic neurological syndromes and beyond emerging with the introduction of immune checkpoint inhibitor cancer immunotherapy. Front Neurol 12:642800. https://doi.org/10.3389/fneur.2021.642800

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dubey D, David WS, Amato AA et al (2019) Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology 93:e1093–e1103. https://doi.org/10.1212/WNL.0000000000008091

    Article  CAS  PubMed  Google Scholar 

  26. Engelborghs S, Niemantsverdriet E, Struyfs H et al (2017) Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement (Amst) 8:111–126. https://doi.org/10.1016/j.dadm.2017.04.007

    Article  Google Scholar 

  27. Vogrig A, Muñiz-Castrillo S, Joubert B et al (2021) Cranial nerve disorders associated with immune checkpoint inhibitors. Neurology 96:e866–e875. https://doi.org/10.1212/WNL.0000000000011340

    Article  CAS  PubMed  Google Scholar 

  28. Déchelotte B, Muñiz-Castrillo S, Joubert B et al (2020) Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000701

    Article  PubMed  PubMed Central  Google Scholar 

  29. Newey CR, Kinzy TG, Punia V, Hantus S (2018) Continuous electroencephalography in the critically ill: clinical and continuous electroencephalography markers for targeted monitoring. J Clin Neurophysiol 35:325–331. https://doi.org/10.1097/WNP.0000000000000475

    Article  PubMed  Google Scholar 

  30. Vogrig A, Joubert B, André-Obadia N et al (2019) Seizure specificities in patients with antibody-mediated autoimmune encephalitis. Epilepsia 60:1508–1525. https://doi.org/10.1111/epi.16282

    Article  PubMed  Google Scholar 

  31. Touat M, Maisonobe T, Knauss S et al (2018) Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 91:e985–e994. https://doi.org/10.1212/WNL.0000000000006124

    Article  CAS  PubMed  Google Scholar 

  32. Johansen A, Christensen SJ, Scheie D et al (2019) Neuromuscular adverse events associated with anti-PD-1 monoclonal antibodies: systematic review. Neurology 92:663–674. https://doi.org/10.1212/WNL.0000000000007235

    Article  CAS  PubMed  Google Scholar 

  33. Sechi E, Markovic SN, McKeon A et al (2020) Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology 95:e2442–e2452. https://doi.org/10.1212/WNL.0000000000010632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreira A, Loquai C, Pföhler C et al (2019) Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur J Cancer 106:12–23. https://doi.org/10.1016/j.ejca.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki S, Ishikawa N, Konoeda F et al (2017) Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89:1127–1134. https://doi.org/10.1212/WNL.0000000000004359

    Article  CAS  PubMed  Google Scholar 

  36. Bourgeois-Vionnet J, Joubert B, Bernard E et al (2018) Nivolumab-induced myositis: a case report and a literature review. J Neurol Sci 387:51–53. https://doi.org/10.1016/j.jns.2018.01.030

    Article  PubMed  Google Scholar 

  37. Nakatani Y, Tanaka N, Enami T et al (2018) Lambert–Eaton myasthenic syndrome caused by nivolumab in a patient with squamous cell lung cancer. Case Rep Neurol 10:346–352. https://doi.org/10.1159/000494078

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang Y-T, Chen Y-P, Lin W-C et al (2020) Immune checkpoint inhibitor-induced myasthenia gravis. Front Neurol 11:634. https://doi.org/10.3389/fneur.2020.00634

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mitsune A, Yanagisawa S, Fukuhara T et al (2018) Relapsed myasthenia gravis after nivolumab treatment. Intern Med 57:1893–1897. https://doi.org/10.2169/internalmedicine.9153-17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Patel AS, Snook RJ, Sehdev A (2019) Chronic inflammatory demyelinating polyradiculoneuropathy secondary to immune checkpoint inhibitors in melanoma patients. Discov Med 28:107–111

    PubMed  Google Scholar 

  41. Okada K, Seki M, Yaguchi H et al (2021) Polyradiculoneuropathy induced by immune checkpoint inhibitors: a case series and review of the literature. J Neurol 268:680–688. https://doi.org/10.1007/s00415-020-10213-x

    Article  PubMed  Google Scholar 

  42. Clarke JL (2012) Leptomeningeal metastasis from systemic cancer. Continuum (Minneap Minn) 18:328–342. https://doi.org/10.1212/01.CON.0000413661.58045.e7

    Article  Google Scholar 

  43. Taillibert S, Chamberlain MC (2018) Leptomeningeal metastasis. Handb Clin Neurol 149:169–204. https://doi.org/10.1016/B978-0-12-811161-1.00013-X

    Article  PubMed  Google Scholar 

  44. Nersesjan V, McWilliam O, Krarup L-H, Kondziella D (2021) Autoimmune encephalitis related to cancer treatment with immune checkpoint inhibitors: a systematic review. Neurology 97:e191–e202. https://doi.org/10.1212/WNL.0000000000012122

    Article  CAS  PubMed  Google Scholar 

  45. Mongay-Ochoa N, Vogrig A, Muñiz-Castrillo S, Honnorat J (2020) Anti-Hu-associated paraneoplastic syndromes triggered by immune-checkpoint inhibitor treatment. J Neurol 267:2154–2156. https://doi.org/10.1007/s00415-020-09940-y

    Article  PubMed  Google Scholar 

  46. Velasco R, Villagrán M, Jové M et al (2021) Encephalitis induced by immune checkpoint inhibitors: a systematic review. JAMA Neurol 78:864–873. https://doi.org/10.1001/jamaneurol.2021.0249

    Article  PubMed  Google Scholar 

  47. Hébert J, Riche B, Vogrig A et al (2020) Epidemiology of paraneoplastic neurologic syndromes and autoimmune encephalitides in France. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000883

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vogrig A, Gigli GL, Segatti S et al (2020) Epidemiology of paraneoplastic neurological syndromes: a population-based study. J Neurol 267:26–35. https://doi.org/10.1007/s00415-019-09544-1

    Article  CAS  PubMed  Google Scholar 

  49. Vogrig A, Joubert B, Maureille A et al (2019) Motor neuron involvement in anti-Ma2-associated paraneoplastic neurological syndrome. J Neurol 266:398–410. https://doi.org/10.1007/s00415-018-9143-x

    Article  CAS  PubMed  Google Scholar 

  50. Graus F (2001) Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 124:1138–1148. https://doi.org/10.1093/brain/124.6.1138

    Article  CAS  PubMed  Google Scholar 

  51. Dalmau J (2004) Clinical analysis of anti-Ma2-associated encephalitis. Brain 127:1831–1844. https://doi.org/10.1093/brain/awh203

    Article  PubMed  Google Scholar 

  52. Shibaki R, Murakami S, Oki K, Ohe Y (2019) Nivolumab-induced autoimmune encephalitis in an anti-neuronal autoantibody-positive patient. Jpn J Clin Oncol 49:793–794. https://doi.org/10.1093/jjco/hyz087

    Article  PubMed  Google Scholar 

  53. Matsuoka H, Kimura H, Koba H et al (2018) Nivolumab-induced limbic encephalitis with anti-hu antibody in a patient with advanced pleomorphic carcinoma of the lung. Clin Lung Cancer 19:e597–e599. https://doi.org/10.1016/j.cllc.2018.04.009

    Article  PubMed  Google Scholar 

  54. Papadopoulos KP, Romero RS, Gonzalez G et al (2018) Anti-hu-associated autoimmune limbic encephalitis in a patient with PD-1 inhibitor-responsive myxoid chondrosarcoma. Oncologist 23:118–120. https://doi.org/10.1634/theoncologist.2017-0344

    Article  PubMed  Google Scholar 

  55. Duong SL, Barbiero FJ, Nowak RJ, Baehring JM (2021) Neurotoxicities associated with immune checkpoint inhibitor therapy. J Neurooncol 152:265–277. https://doi.org/10.1007/s11060-021-03695-w

    Article  CAS  PubMed  Google Scholar 

  56. Kang JH, Bluestone JA, Young A (2021) Predicting and preventing immune checkpoint inhibitor toxicity: targeting cytokines. Trends Immunol 42:293–311. https://doi.org/10.1016/j.it.2021.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Simonaggio A, Michot JM, Voisin AL et al (2019) Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol 5:1310. https://doi.org/10.1001/jamaoncol.2019.1022

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dolladille C, Ederhy S, Sassier M et al (2020) Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol 6:865–871. https://doi.org/10.1001/jamaoncol.2020.0726

    Article  PubMed  Google Scholar 

  59. Allouchery M, Lombard T, Martin M et al (2020) Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade ≥ 2 immune-related adverse events in patients with cancer. J Immunother Cancer 8:e001622. https://doi.org/10.1136/jitc-2020-001622

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mikami T, Liaw B, Asada M et al (2021) Neuroimmunological adverse events associated with immune checkpoint inhibitor: a retrospective, pharmacovigilance study using FAERS database. J Neurooncol 152:135–144. https://doi.org/10.1007/s11060-020-03687-2

    Article  PubMed  Google Scholar 

  61. Chen X, Schwartz GK, DeAngelis LM et al (2012) Dropped head syndrome: report of three cases during treatment with a MEK inhibitor. Neurology 79:1929–1931. https://doi.org/10.1212/WNL.0b013e318271f87e

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sindoni A, Rodolico C, Pappalardo MA et al (2016) Hypothyroid myopathy: a peculiar clinical presentation of thyroid failure. Review of the literature. Rev Endocr Metab Disord 17:499–519. https://doi.org/10.1007/s11154-016-9357-0

    Article  CAS  PubMed  Google Scholar 

  63. Singer S, Grommes C, Reiner AS et al (2015) Posterior reversible encephalopathy syndrome in patients with cancer. Oncologist 20:806–811. https://doi.org/10.1634/theoncologist.2014-0149

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vogrig A, Zanoni T, Moretto G (2016) Nystagmus and lower extremity hyperalgesia after colectomy. JAMA 316:1488–1489. https://doi.org/10.1001/jama.2016.13658

    Article  PubMed  Google Scholar 

  65. Bradshaw MJ, Venkatesan A (2016) Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13:493–508. https://doi.org/10.1007/s13311-016-0433-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by FRM (Fondation pour la recherche médicale, DQ20170336751) and has been developed within the BETPSY project, which is supported by a public grant overseen by the French National Research Agency (ANR), as part of the second “Investissements d´Avenir” program (reference ANR-18-RHUS-0012).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: AV, JH. Acquisition of data: AV, SMC, AF, JH, BJ. Analysis and interpretation of data: AV, SMC, AF, JH, BJ. Drafting of the manuscript: AV, SMC, BJ. Critical revision of the manuscript for important intellectual content: AV, SMC, AF, JH, BJ. Study supervision: JH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bastien Joubert.

Ethics declarations

Conflicts of interest

Dr. Vogrig reports receiving a fellowship grant from the European Academy of Neurology (EAN). No other disclosures were reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogrig, A., Muñiz-Castrillo, S., Farina, A. et al. How to diagnose and manage neurological toxicities of immune checkpoint inhibitors: an update. J Neurol 269, 1701–1714 (2022). https://doi.org/10.1007/s00415-021-10870-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10870-6

Keywords

Navigation