Skip to main content
Log in

A review of anticoagulation in patients with central nervous system malignancy: between a rock and a hard place

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The incidence and prevalence of patients who develop primary and secondary metastatic central nervous system cancer (CNS) is increasing. This is a consequence of advancements in the sensitivity and availability of diagnostic imaging, and improved therapeutic options, leading to increased detection of CNS malignancies and improved survival. These patients are at very high risk of thrombosis as well as haemorrhage, and the optimum management of anticoagulation can be challenging for treating clinicians, particularly as robust prospective evidence is sparse. In this focused review, we discuss (1) risk factors for thrombosis and bleeding in these patients, (2) management of acute venous thromboembolism (VTE) including evidence for direct oral anticoagulants, and how to approach patients with contraindications to anticoagulation, (3) ambulatory VTE prophylaxis, (4) VTE prophylaxis in patients who have undergone craniotomy for cancer, and (5) management of anticoagulation-related intracranial haemorrhage. Based on review of the available literature and author opinion, we propose practical management algorithms to aid clinicians faced with treating CNS cancer patients with thrombosis or CNS haemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel AP et al (2019) Global, regional, and national burden of brain and other CNS cancer, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(4):376–393

    Google Scholar 

  2. Ostrom QT, Wright CH, Barnholtz-Sloan JS (2018) Brain metastases: epidemiology. Handb Clin Neurol 149:27–42

    PubMed  Google Scholar 

  3. Berghoff AS et al (2016) Immune checkpoint inhibitors in brain metastases: from biology to treatment. Am Soc Clin Oncol Educ Book 36:e116–e122

    Google Scholar 

  4. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

    PubMed  Google Scholar 

  5. Watson HG et al (2015) Guideline on aspects of cancer-related venous thrombosis. Br J Haematol 170(5):640–648

    PubMed  Google Scholar 

  6. Khorana AA (2010) Venous thromboembolism and prognosis in cancer. Thromb Res 125(6):490–493

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Semrad TJ et al (2007) Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 106(4):601–608

    PubMed  Google Scholar 

  8. Weinstock MJ, Uhlmann EJ, Zwicker JI (2016) Intracranial hemorrhage in cancer patients treated with anticoagulation. Thromb Res 140(Suppl 1):S60–S65

    CAS  PubMed  Google Scholar 

  9. Gerber DE, Grossman SA, Streiff MB (2006) Management of venous thromboembolism in patients with primary and metastatic brain tumors. J Clin Oncol 24(8):1310–1318

    CAS  PubMed  Google Scholar 

  10. Bondy ML et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113(7 Suppl):1953–1968

    PubMed  Google Scholar 

  11. Perry JR (2012) Thromboembolic disease in patients with high-grade glioma. Neuro Oncol 14(Suppl 4):iv73–iv80

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Streiff MB et al (2004) ABO blood group is a potent risk factor for venous thromboembolism in patients with malignant gliomas. Cancer 100(8):1717–1723

    PubMed  Google Scholar 

  13. Streiff MB et al (2015) A prospective multicenter study of venous thromboembolism in patients with newly-diagnosed high-grade glioma: hazard rate and risk factors. J Neurooncol 124(2):299–305

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taillibert S, Taillandier L, Le Rhun E (2015) Venous thrombosis in patients with high-grade glioma. Curr Opin Oncol 27(6):516–521

    CAS  PubMed  Google Scholar 

  15. Sartori MT et al (2011) Prothrombotic state in glioblastoma multiforme: an evaluation of the procoagulant activity of circulating microparticles. J Neurooncol 104(1):225–231

    CAS  PubMed  Google Scholar 

  16. Riedl J et al (2017) Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 129(13):1831–1839

    CAS  PubMed  Google Scholar 

  17. Khorana AA et al (2008) Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111(10):4902–4907

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mulder FI et al (2019) The Khorana score for prediction of venous thromboembolism in cancer patients: a systematic review and meta-analysis. Haematologica 104(6):1277–1287

    PubMed  PubMed Central  Google Scholar 

  19. Chew HK et al (2006) Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 166(4):458–464

    PubMed  Google Scholar 

  20. Ruff RL, Posner JB (1983) Incidence and treatment of peripheral venous thrombosis in patients with glioma. Ann Neurol 13(3):334–336

    CAS  PubMed  Google Scholar 

  21. Choucair AK, Silver P, Levin VA (1987) Risk of intracranial hemorrhage in glioma patients receiving anticoagulant therapy for venous thromboembolism. J Neurosurg 66(3):357–358

    CAS  PubMed  Google Scholar 

  22. Altschuler E et al (1990) The risk and efficacy of anticoagulant therapy in the treatment of thromboembolic complications in patients with primary malignant brain tumors. Neurosurgery 27(1):74–76 (discussion 77)

    CAS  PubMed  Google Scholar 

  23. Edwin NC et al (2016) Recurrent venous thromboembolism in glioblastoma. Thromb Res 137:184–188

    CAS  PubMed  Google Scholar 

  24. Zwicker JI, Karp Leaf R, Carrier M (2016) A meta-analysis of intracranial hemorrhage in patients with brain tumors receiving therapeutic anticoagulation. J Thromb Haemost 14(9):1736–1740

    CAS  PubMed  Google Scholar 

  25. Mantia C et al (2017) Predicting the higher rate of intracranial hemorrhage in glioma patients receiving therapeutic enoxaparin. Blood 129(25):3379–3385

    CAS  PubMed  Google Scholar 

  26. Hankey GJ et al (2014) Intracranial hemorrhage among patients with atrial fibrillation anticoagulated with warfarin or rivaroxaban: the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation. Stroke 45(5):1304–1312

    CAS  PubMed  Google Scholar 

  27. Wronski M, Arbit E (2000) Surgical treatment of brain metastases from melanoma: a retrospective study of 91 patients. J Neurosurg 93(1):9–18

    CAS  PubMed  Google Scholar 

  28. Wronski M et al (1996) Surgical resection of brain metastases from renal cell carcinoma in 50 patients. Urology 47(2):187–193

    CAS  PubMed  Google Scholar 

  29. Donato J et al (2015) Intracranial hemorrhage in patients with brain metastases treated with therapeutic enoxaparin: a matched cohort study. Blood 126(4):494–499

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsieh MJ et al (2009) Prediction, clinical characteristics and prognosis of intracerebral hemorrhage in hepatocellular carcinoma patients with intracerebral metastasis. J Clin Neurosci 16(3):394–398

    PubMed  Google Scholar 

  31. Lin RJ, Green DL, Shah GL (2018) Therapeutic anticoagulation in patients with primary brain tumors or secondary brain metastasis. Oncologist 23(4):468–473

    PubMed  Google Scholar 

  32. Alcusky M et al (2019) Changes in anticoagulant utilization among United States nursing home residents with atrial fibrillation from 2011 to 2016. J Am Heart Assoc 8(9):e012023

    PubMed  PubMed Central  Google Scholar 

  33. Ruff CT et al (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383(9921):955–962

    CAS  PubMed  Google Scholar 

  34. Raskob GE, Buller HR, Segers A (2018) Edoxaban for cancer-associated venous thromboembolism. N Engl J Med 379(1):95–96

    PubMed  Google Scholar 

  35. Young AM et al (2018) Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J Clin Oncol 36(20):2017–2023

    CAS  PubMed  Google Scholar 

  36. Key NS, Bohlke K, Falanga A (2020) Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update summary. J Clin Oncol 38(5):496–520

    PubMed  Google Scholar 

  37. Konstantinides SV et al (2019) 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 41:543–603

    Google Scholar 

  38. Mcbane RD II et al (2017) Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. Thromb Haemost 117(10):1952–1961

    Google Scholar 

  39. Carney BJ et al (2019) Intracranial hemorrhage with direct oral anticoagulants in patients with brain tumors. J Thromb Haemost 17(1):72–76

    CAS  PubMed  Google Scholar 

  40. Kaatz S et al (2015) Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost 13(11):2119–2126

    CAS  PubMed  Google Scholar 

  41. Swartz ADJ (20119) Safety of DOACs in patients with CNS malignancies. ASH, 2019: p. poster 1160

  42. Kearon C, Gent M, Hirsh J, Weitz J, Kovacs MJ, Anderson DR, Turpie AG, Green D, Ginsberg JS, Wells P, MacKinnon B, Julian JA (1999) A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. New Engl J Med 341(4):298–298

    Google Scholar 

  43. Kearon C et al (2003) Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med 349(7):631–639

    CAS  PubMed  Google Scholar 

  44. Schulman S et al (1997) The duration of oral anticoagulant therapy after a second episode of venous thromboembolism. N Engl J Med 336(6):393–398

    CAS  PubMed  Google Scholar 

  45. Streiff MB (2000) Vena caval filters: a comprehensive review. Blood 95(12):3669–3677

    CAS  PubMed  Google Scholar 

  46. Hann CL, Streiff MB (2005) The role of vena caval filters in the management of venous thromboembolism. Blood Rev 19(4):179–202

    PubMed  Google Scholar 

  47. BCfSiHW Group et al (2006) Guidelines on use of vena cava filters. Br J Haematol 134(6):590–595

    Google Scholar 

  48. Konstantinides SV et al (2019) 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 41(4):543–603

    Google Scholar 

  49. PREPIC Study Group (2005) Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) randomized study. Circulation 112(3):416–422

    Google Scholar 

  50. Elting LS et al (2004) Outcomes and cost of deep venous thrombosis among patients with cancer. Arch Intern Med 164(15):1653–1661

    PubMed  Google Scholar 

  51. Brunson A et al (2017) Inferior vena cava filters in patients with cancer and venous thromboembolism (VTE) does not improve clinical outcomes: a population-based study. Thromb Res 153:57–64

    CAS  PubMed  Google Scholar 

  52. Levin JM et al (1993) Complications of therapy for venous thromboembolic disease in patients with brain tumors. Neurology 43(6):1111–1114

    CAS  PubMed  Google Scholar 

  53. Schiff D, DeAngelis LM (1994) Therapy of venous thromboembolism in patients with brain metastases. Cancer 73(2):493–498

    CAS  PubMed  Google Scholar 

  54. Crumley KD et al (2018) Factors affecting inferior vena cava filter retrieval: a review. Vasc Endovasc Surg 53(3):224–229

    Google Scholar 

  55. Brandes AA et al (1997) Incidence of risk of thromboembolism during treatment high-grade gliomas: a prospective study. Eur J Cancer 33(10):1592–1596

    CAS  PubMed  Google Scholar 

  56. Perry JR et al (2010) PRODIGE: a randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. J Thromb Haemost 8(9):1959–1965

    CAS  PubMed  Google Scholar 

  57. Khorana AA et al (2019) Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N Engl J Med 380(8):720–728

    CAS  PubMed  Google Scholar 

  58. Carrier M et al (2018) Apixaban to prevent venous thromboembolism in patients with cancer. N Engl J Med 380(8):711–719

    PubMed  Google Scholar 

  59. Simanek R et al (2007) Venous thromboembolism and survival in patients with high-grade glioma. Neuro Oncol 9(2):89–95

    PubMed  PubMed Central  Google Scholar 

  60. Senders JT et al (2018) Venous thromboembolism and intracranial hemorrhage after craniotomy for primary malignant brain tumors: a National Surgical Quality Improvement Program analysis. J Neurooncol 136(1):135–145

    PubMed  Google Scholar 

  61. Farge D et al (2016) International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 17(10):e452–e466

    CAS  PubMed  Google Scholar 

  62. Alshehri N et al (2016) Venous thromboembolism prophylaxis in brain tumor patients undergoing craniotomy: a meta-analysis. J Neurooncol 130(3):561–570

    CAS  PubMed  Google Scholar 

  63. Navi BB et al (2010) Intracerebral and subarachnoid hemorrhage in patients with cancer. Neurology 74(6):494–501

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berwaerts J, Webster J (2000) Analysis of risk factors involved in oral-anticoagulant-related intracranial haemorrhages. QJM Int J Med 93(8):513–521

    CAS  Google Scholar 

  65. Fogelholm R et al (1992) Anticoagulant treatment as a risk factor for primary intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 55(12):1121–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Radberg JA, Olsson JE, Radberg CT (1991) Prognostic parameters in spontaneous intracerebral hematomas with special reference to anticoagulant treatment. Stroke 22(5):571–576

    CAS  PubMed  Google Scholar 

  67. Brouwers HB et al (2014) Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol 71(2):158–164

    PubMed  PubMed Central  Google Scholar 

  68. Collins CE et al (2014) Effect of preinjury warfarin use on outcomes after head trauma in medicare beneficiaries. Am J Surg 208(4):544–549.e1

    PubMed  PubMed Central  Google Scholar 

  69. Brewer ES et al (2011) Incidence and predictors of intracranial hemorrhage after minor head trauma in patients taking anticoagulant and antiplatelet medication. J Trauma 70(1):E1–E5

    CAS  PubMed  Google Scholar 

  70. Rendell S, Batchelor JS (2013) An analysis of predictive markers for intracranial haemorrhage in warfarinised head injury patients. Emerg Med J 30(1):28–31

    PubMed  Google Scholar 

  71. Franko J et al (2006) Advanced age and preinjury warfarin anticoagulation increase the risk of mortality after head trauma. J Trauma 61(1):107–110

    CAS  PubMed  Google Scholar 

  72. Davis SM et al (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66(8):1175–1181

    CAS  PubMed  Google Scholar 

  73. Seiffge DJ et al (2019) Meta-analysis of haematoma volume, haematoma expansion and mortality in intracerebral haemorrhage associated with oral anticoagulant use. J Neurol 266(12):3126–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Caldeira D et al (2015) Intracranial hemorrhage risk with the new oral anticoagulants: a systematic review and meta-analysis. J Neurol 262(3):516–522

    CAS  PubMed  Google Scholar 

  75. Tsivgoulis G et al (2018) Neuroimaging and clinical outcomes of oral anticoagulant-associated intracerebral hemorrhage. Ann Neurol 84(5):694–704

    CAS  PubMed  Google Scholar 

  76. Wilson D et al (2017) Outcome of intracerebral hemorrhage associated with different oral anticoagulants. Neurology 88(18):1693–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huttner HB et al (2006) Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy: comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates. Stroke 37(6):1465–1470

    CAS  PubMed  Google Scholar 

  78. Steiner T et al (2016) Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial. Lancet Neurol 15(6):566–573

    CAS  PubMed  Google Scholar 

  79. Pollack CV Jr et al (2015) Idarucizumab for dabigatran reversal. N Engl J Med 373(6):511–520

    CAS  PubMed  Google Scholar 

  80. Connolly SJ et al (2019) Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med 380(14):1326–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gerner ST et al (2018) Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol 83(1):186–196

    CAS  PubMed  Google Scholar 

  82. Grandhi R et al (2015) Administration of 4-factor prothrombin complex concentrate as an antidote for intracranial bleeding in patients taking direct factor Xa inhibitors. World Neurosurg 84(6):1956–1961

    PubMed  Google Scholar 

  83. Frontera JA et al (2016) Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care 24(1):6–46

    CAS  PubMed  Google Scholar 

  84. Beynon C et al (2019) Management of spinal emergencies in patients on direct oral anticoagulants. World Neurosurg 131:e570–e578

    PubMed  Google Scholar 

  85. Dager WE, Roberts AJ, Nishijima DK (2019) Effect of low and moderate dose FEIBA to reverse major bleeding in patients on direct oral anticoagulants. Thromb Res 173:71–76

    CAS  PubMed  Google Scholar 

  86. Dibu JR et al (2016) The role of FEIBA in reversing novel oral anticoagulants in intracerebral hemorrhage. Neurocrit Care 24(3):413–419

    CAS  PubMed  Google Scholar 

  87. Ehrlich HJ, Henzl MJ, Gomperts ED (2002) Safety of factor VIII inhibitor bypass activity (FEIBA): 10-year compilation of thrombotic adverse events. Haemophilia 8(2):83–90

    CAS  PubMed  Google Scholar 

  88. van Veen JJ et al (2011) Protamine reversal of low molecular weight heparin: clinically effective? Blood Coagul Fibrinolysis 22(7):565–570

    PubMed  Google Scholar 

  89. Makris M, Hough RE, Kitchen S (2000) Poor reversal of low molecular weight heparin by protamine. Br J Haematol 108(4):884–885

    CAS  PubMed  Google Scholar 

  90. Nybo M, Madsen JS (2008) Serious anaphylactic reactions due to protamine sulfate: a systematic literature review. Basic Clin Pharmacol Toxicol 103(2):192–196

    CAS  PubMed  Google Scholar 

  91. Scott M et al (2018) Reintroduction of anticoagulant therapy after intracranial haemorrhage: if and when? Blood Rev 32(3):256–263

    PubMed  Google Scholar 

  92. Murthy SB et al (2017) Restarting anticoagulant therapy after intracranial hemorrhage. Stroke 48(6):1594–1600

    PubMed  PubMed Central  Google Scholar 

  93. Li Y-G, Lip GYH (2018) Anticoagulation resumption after intracerebral hemorrhage. Curr Atheroscler Rep 20(7):32–32

    PubMed  PubMed Central  Google Scholar 

  94. Hawryluk GWJ et al (2011) Survey of neurosurgical management of central nervous system hemorrhage in patients receiving anticoagulation therapy: current practice is highly variable and may be suboptimal. World Neurosurg 76(3–4):299–303

    PubMed  Google Scholar 

  95. Carney BJ, Puligandla M, Mantia C, Weber GM, Neuberg DS, Zwicker JI (2019) Recurrent intracranial hemorrhage and venous thromboembolism following initial intracranial hemorrhage in patients with brain tumors on anticoagulation. Blood 17(1):72–76

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Swan.

Ethics declarations

Conflict of interest

JT: honoraria from BMS-Pfizer, Boehringer, Bayer and Daichii-Sankyo. DJS: scientific advisory boards for Bayer and Pfizer, compensation for educational efforts from Stago, research funding from Portola, and Speaker bureau: NOAC education, Portola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swan, D., Seiffge, D.J. & Thachil, J. A review of anticoagulation in patients with central nervous system malignancy: between a rock and a hard place. J Neurol 268, 2390–2401 (2021). https://doi.org/10.1007/s00415-020-09775-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09775-7

Keywords

Navigation