Skip to main content

Advertisement

Log in

Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Previous studies have found that white matter (WM) alterations might be correlated in Parkinson’s disease (PD) patients with cognitive impairment. This study aimed to investigate WM structural network connectome alterations in PD patients with mild cognitive impairment (PD-MCI) and assess the relationship between cognitive impairment and structural topological network changes in PD patients.

Methods

All 31 healthy controls (HCs) and 71 PD patients (43 PD-NC and 28 PD-MCI) matched for age, sex and education underwent 3.0 T MRI and diffusion tensor imaging (DTI) scan. Graph theoretical analyses and network-based statistical (NBS) analyses were performed to identify the structural WM networks and subnetwork changes in PD-MCI.

Results

PD-MCI patients showed significantly decreased global efficiency (Eglob) and increased shortest path length (Lp) compared with the HC group. Several nodal efficiencies showed significant differences in multiple brain regions among the three groups. The nodal efficiency of the orbitofrontal part was closely related to the overall cognitive ability and multiple sub-cognitive domains. Moreover, NBS analyses identified eight one-connect subnetworks, three two-connect subnetworks and two multi-connect subnetworks with reduced connectivity that characterizes the WM structural organization in PD-MCI patients. The two multi-connect subnetworks were located on the bilateral lobe, and both were centered on the orbitofrontal part.

Conclusions

This study provided new evidence that PD with cognitive dysfunction is associated with WM structural alterations. The nodal efficiency and sub-network analyses focusing on the orbitofrontal part might provide new ideas to explore the physiological mechanism of PD-MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldman JG, Weis H, Stebbins G et al (2012) Clinical differences among mild cognitive impairment subtypes in Parkinson’s disease. Mov Disord 27:1129–1136. https://doi.org/10.1002/mds.25062

    Article  PubMed  PubMed Central  Google Scholar 

  2. Domellof ME, Ekman U, Forsgren L, Elgh E (2015) Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand 132:79–88. https://doi.org/10.1111/ane.12375

    Article  CAS  PubMed  Google Scholar 

  3. Adler CH, Caviness JN, Sabbagh MN et al (2010) Heterogeneous neuropathological findings in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol 120:827–828

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vasconcellos LFR, Pereira JS, Charchat-Fichman H et al (2019) Mild cognitive impairment in Parkinson’s disease: characterization and impact on quality of life according to subtype. Geriatr Gerontol Int 19:497–502. https://doi.org/10.1111/ggi.13649

    Article  PubMed  Google Scholar 

  5. Lee SJ, Kim JS, Yoo JY et al (2010) Influence of white matter hyperintensities on the cognition of patients with parkinson disease. Alzheimer Dis Assoc Disord 24:227–233. https://doi.org/10.1097/WAD.0b013e3181d71a13

    Article  PubMed  Google Scholar 

  6. Kandiah N, Mak E, Ng A et al (2013) Cerebral white matter hyperintensity in Parkinson’s disease: a major risk factor for mild cognitive impairment. Park Relat Disord 19:680–683. https://doi.org/10.1016/j.parkreldis.2013.03.008

    Article  Google Scholar 

  7. Matsui H, Nishinaka K, Oda M et al (2007) Dementia in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand 116:177–181. https://doi.org/10.1111/j.1600-0404.2007.00838.x

    Article  CAS  PubMed  Google Scholar 

  8. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422. https://doi.org/10.1038/nrn2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42. https://doi.org/10.1371/journal.pcbi.0010042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbasi N, Mohajer B, Abbasi S et al (2018) Relationship between cerebrospinal fluid biomarkers and structural brain network properties in Parkinson’s disease. Mov Disord 33:431–439. https://doi.org/10.1002/mds.27284

    Article  CAS  PubMed  Google Scholar 

  11. Nigro S, Riccelli R, Passamonti L et al (2016) Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Hum Brain Mapp 37:4500–4510. https://doi.org/10.1002/hbm.23324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aarabi MH, Kamalian A, Mohajer B et al (2015) A statistical approach in human brain connectome of Parkinson disease in elderly people using network based statistics. Conf Proc IEEE Eng Med Biol Soc 2015:4310–4313. https://doi.org/10.1109/embc.2015.7319348

    Article  Google Scholar 

  13. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  CAS  PubMed  Google Scholar 

  14. Litvan I, Goldman JG, Troster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord 27:349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fahn S, Elton R (1987) Recent developments in Parkinson’s disease. Macmillan Heal care Inf 2:293–304

    Google Scholar 

  16. Goetz CG, Poewe W, Rascol O et al (2004) Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 19:1020–1028. https://doi.org/10.1002/mds.20213

    Article  PubMed  Google Scholar 

  17. Hamilton MAX (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. The Gerontologist 9:179–186. https://doi.org/10.1093/geront/9.3_Part_1.179

    Article  CAS  PubMed  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  21. Nasreddine ZS, Phillips NA, Bedirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  22. Tombaugh TN, Kozak J, Rees L (1999) Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol 14:167–177

    CAS  PubMed  Google Scholar 

  23. Gong Y et al (1989) Wechsler adult intelligence scale-revised in China Version. Hunan Med Coll Press, China

    Google Scholar 

  24. Wang P, Shi L, Zhao Q et al (2014) Longitudinal changes in clock drawing test (CDT) performance before and after cognitive decline. PLoS One 9:1–9. https://doi.org/10.1371/journal.pone.0097873

    Article  CAS  Google Scholar 

  25. Smith A (1982) Manual for the symbol digit modalities test. Western Psychological Services, Los Angeles

    Google Scholar 

  26. Gong Y et al (1989) Manual of Wechsler Memory Scale—Chinese Version. Hunan Med Coll Press, China

    Google Scholar 

  27. Cui Z, Zhong S, Xu P et al (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42. https://doi.org/10.3389/fnhum.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Wang X, Xia M et al (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. https://doi.org/10.3389/fnhum.2015.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG (2018) White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology 91:e2244–e2255. https://doi.org/10.1212/wnl.0000000000006646

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baggio HC, Sala-Llonch R, Segura B et al (2014) Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp 35:4620–4634. https://doi.org/10.1002/hbm.22499

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baggio HC, Segura B, Sala-Llonch R et al (2015) Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum Brain Mapp 36:199–212. https://doi.org/10.1002/hbm.22622

    Article  PubMed  Google Scholar 

  32. Lopes R, Delmaire C, Defebvre L et al (2017) Cognitive phenotypes in parkinson’s disease differ in terms of brain-network organization and connectivity. Hum Brain Mapp 38:1604–1621. https://doi.org/10.1002/hbm.23474

    Article  PubMed  Google Scholar 

  33. Pereira JB, Aarsland D, Ginestet CE et al (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum Brain Mapp 36:2980–2995. https://doi.org/10.1002/hbm.22822

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yao Z, Zhang Y, Lin L et al (2010) Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol 6:e1001006. https://doi.org/10.1371/journal.pcbi.1001006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28:4756–4766. https://doi.org/10.1523/jneurosci.0141-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li C, Huang B, Zhang R et al (2017) Impaired topological architecture of brain structural networks in idiopathic Parkinson’s disease: a DTI study. Brain Imaging Behav 11:113–128. https://doi.org/10.1007/s11682-015-9501-6

    Article  PubMed  Google Scholar 

  37. Wen MC, Xu Z, Lu Z et al (2017) Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson’s disease. Sci Rep 7:12559. https://doi.org/10.1038/s41598-017-12947-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Auning E, Kjaervik VK, Selnes P et al (2014) White matter integrity and cognition in Parkinson’s disease: a cross-sectional study. BMJ Open 4:e003976. https://doi.org/10.1136/bmjopen-2013-003976

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zheng Z, Shemmassian S, Wijekoon C et al (2014) DTI correlates of distinct cognitive impairments in Parkinson’s disease. Hum Brain Mapp 35:1325–1333. https://doi.org/10.1002/hbm.22256

    Article  PubMed  Google Scholar 

  40. Deng B, Zhang Y, Wang L et al (2013) Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson’s disease. Am J Alzheimers Dis Other Demen 28:154–164. https://doi.org/10.1177/1533317512470207

    Article  PubMed  Google Scholar 

  41. Chen B, Fan GG, Liu H, Wang S (2015) Changes in anatomical and functional connectivity of Parkinson’s disease patients according to cognitive status. Eur J Radiol 84:1318–1324. https://doi.org/10.1016/j.ejrad.2015.04.014

    Article  PubMed  Google Scholar 

  42. Koshimori Y, Segura B, Christopher L et al (2015) Imaging changes associated with cognitive abnormalities in Parkinson’s disease. Brain Struct Funct 220:2249–2261. https://doi.org/10.1007/s00429-014-0785-x

    Article  CAS  PubMed  Google Scholar 

  43. Burks JD, Conner AK, Bonney PA et al (2018) Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg 128:1865–1872. https://doi.org/10.3171/2017.3.JNS162070

    Article  PubMed  Google Scholar 

  44. Fan L, Li H, Zhuo J et al (2016) The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526. https://doi.org/10.1093/cercor/bhw157

    Article  PubMed  PubMed Central  Google Scholar 

  45. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178. https://doi.org/10.1038/nature18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study funding was provided by the National Natural Science Foundation of China (No. 81501112, 81471654),Guangdong Natural Science Foundation (No. 2016A030310327), Key Program of Natural Science Foundation of Guangdong Province, China (No. 2017B030311015), Guangzhou Municipal People’s Livelihood Science and Technology Project (No. 201803010085) and the Fundamental Research Funds for the Central Universities (2018MS27).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Wang or Kun Nie.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This research protocol was approved by the Medical Ethics Committee of Guangdong General Hospital and informed consent was obtained from all participants (No. GDREC2015195H). The research was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Supplementary material 2 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Mei, M., Gao, Y. et al. Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging. J Neurol 267, 933–943 (2020). https://doi.org/10.1007/s00415-019-09645-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09645-x

Keywords

Navigation