Skip to main content

Advertisement

Log in

Risk of Parkinson’s disease after colectomy: longitudinal follow-up study using a national sample cohort

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and purpose

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by deposition of intraneural inclusion bodies in the brain as well as the enteric nervous system. Emerging concepts regarding the brain–gut axis have been proposed for neurological disorders. Thus, the present study investigated the associations between colectomy and developing PD.

Methods

We conducted a retrospective cohort study using National Health Insurance Service–National Sample Cohort of Korea. This study included patients who underwent colectomy during 2003–2009, and up to 10 individuals per patient, matched in terms of age and sex, who did not undergo colectomy. The colectomy group was subdivided by the causes and surgical methods of colectomy. The risk of PD occurrence was evaluated over a follow-up period of at least 6 years using Cox regression analyses.

Results

Colectomy was associated with a higher risk of developing PD (adjusted hazard ratio [HR]: 1.962; 95% confidence interval [CI] 1.002–3.840). There was no significant difference in the occurrence of PD among the subgroups classified by the causes or surgical methods of colectomy.

Conclusions

Colectomy was associated with the development of PD, suggesting that colon issues play an important role in the pathophysiological mechanisms of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sakakibara R, Hattori T, Uchiyama T et al (2000) Micturitional disturbance in pure autonomic failure. Neurology 54:499–501

    Article  CAS  PubMed  Google Scholar 

  2. Brown TP, Rumsby PC, Capleton AC et al (2006) Pesticides and Parkinson’s disease—is there a link? Environ Health Perspect 114:156–164

    Article  PubMed  Google Scholar 

  3. Gupta A, Dawson VL, Dawson TM (2008) What causes cell death in Parkinson’s disease? Ann Neurol 64(Suppl 2):S3–S15. https://doi.org/10.1002/ana.21573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Tredici KD, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  6. Palma J-A, Kaufmann H (2014) Autonomic disorders predicting Parkinson’s disease. Parkinsonism Relat Disord 20:S94–S98. https://doi.org/10.1016/S1353-8020(13)70024-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cersosimo MG, Benarroch EE (2012) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46:559–564. https://doi.org/10.1016/j.nbd.2011.10.014

    Article  PubMed  Google Scholar 

  8. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm Vienna Austria 1996 110:517–536. https://doi.org/10.1007/s00702-002-0808-2

    Article  CAS  Google Scholar 

  9. Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci USA 106:12571–12572. https://doi.org/10.1073/pnas.0906759106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abbott RD, Petrovitch H, White LR et al (2001) Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57:456–462

    Article  CAS  PubMed  Google Scholar 

  11. Shannon KM, Keshavarzian A, Dodiya HB et al (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 27:716–719. https://doi.org/10.1002/mds.25020

    Article  PubMed  Google Scholar 

  12. Postuma RB, Gagnon J-F, Pelletier A, Montplaisir J (2013) Prodromal autonomic symptoms and signs in Parkinson’s disease and dementia with Lewy bodies. Mov Disord 28:597–604. https://doi.org/10.1002/mds.25445

    Article  PubMed  Google Scholar 

  13. Orimo S, Uchihara T, Nakamura A et al (2008) Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain J Neurol 131:642–650. https://doi.org/10.1093/brain/awm302

    Article  Google Scholar 

  14. Orimo S, Takahashi A, Uchihara T et al (2007) Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol Zurich Switz 17:24–30. https://doi.org/10.1111/j.1750-3639.2006.00032.x

    Article  CAS  Google Scholar 

  15. Goldstein DS (2006) Orthostatic hypotension as an early finding in Parkinson’s disease. Clin Auton Res 16:46–54. https://doi.org/10.1007/s10286-006-0317-8

    Article  PubMed  Google Scholar 

  16. Pfeiffer RF (2018) Gastrointestinal Dysfunction in Parkinson’s Disease. Curr Treat Options Neurol 20:54. https://doi.org/10.1007/s11940-018-0539-9

    Article  PubMed  Google Scholar 

  17. Derkinderen P, Rouaud T, Lebouvier T et al (2011) Parkinson disease: the enteric nervous system spills its guts. Neurology 77:1761–1767. https://doi.org/10.1212/WNL.0b013e318236ef60

    Article  CAS  PubMed  Google Scholar 

  18. Miki Y, Mori F, Wakabayashi K et al (2009) Incidental Lewy body disease restricted to the heart and stellate ganglia. Mov Disord 24:2299–2301. https://doi.org/10.1002/mds.22775

    Article  PubMed  Google Scholar 

  19. Mulak A (2015) Brain–gut–microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609. https://doi.org/10.3748/wjg.v21.i37.10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parashar A, Udayabanu M (2017) Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53. https://doi.org/10.3389/fncel.2013.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mogi M, Harada M, Riederer P et al (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210. https://doi.org/10.1016/0304-3940(94)90746-3

    Article  CAS  PubMed  Google Scholar 

  24. Hui KY, Fernandez-Hernandez H, Hu J et al (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aai7795

    Article  PubMed  PubMed Central  Google Scholar 

  25. An SJ, Lee SH, Lee SY et al (2017) Femur fractures in Parkinsonism: analysis of a national sample cohort in South Korea. J Clin Neurol 13:380–386. https://doi.org/10.3988/jcn.2017.13.4.380

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanyuda A, Ogino S, Qian ZR et al (2016) Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int J Cancer 139:854–868. https://doi.org/10.1002/ijc.30122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmadi A, Mobasheri M, Hashemi-Nazari SS et al (2014) Prevalence of hypertension and type 2 diabetes mellitus in patients with colorectal cancer and their median survival time: a cohort study. J Res Med 19:850–854

    Google Scholar 

  28. Anuurad E, Shiwaku K, Nogi A et al (2003) The new BMI criteria for asians by the regional office for the western pacific region of WHO are suitable for screening of overweight to prevent metabolic syndrome in elder Japanese workers. J Occup Health 45:335–343

    Article  PubMed  Google Scholar 

  29. Chen RC, Chang SF, Su CL et al (2001) Prevalence, incidence, and mortality of PD A door-to-door survey in Ilan County, Taiwan. Neurology 57:1679–1686

    Article  CAS  PubMed  Google Scholar 

  30. Tan LCS, Venketasubramanian N, Hong CY et al (2004) Prevalence of Parkinson disease in Singapore: Chinese vs Malays vs Indians. Neurology 62:1999–2004

    Article  CAS  PubMed  Google Scholar 

  31. Seo W-K, Koh S-B, Kim B-J et al (2007) Prevalence of Parkinson’s disease in Korea. J Clin Neurosci 14:1155–1157. https://doi.org/10.1016/j.jocn.2006.09.005

    Article  PubMed  Google Scholar 

  32. Yamawaki M, Kusumi M, Kowa H, Nakashima K (2009) Changes in prevalence and incidence of Parkinson’s disease in Japan during a quarter of a century. Neuroepidemiology 32:263–269. https://doi.org/10.1159/000201565

    Article  PubMed  Google Scholar 

  33. Schrag A, Horsfall L, Walters K et al (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14:57–64. https://doi.org/10.1016/S1474-4422(14)70287-X

    Article  PubMed  Google Scholar 

  34. Pont-Sunyer C, Hotter A, Gaig C et al (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30:229–237. https://doi.org/10.1002/mds.26077

    Article  PubMed  Google Scholar 

  35. Abbott RD, Ross GW, Petrovitch H et al (2007) Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord 22:1581–1586. https://doi.org/10.1002/mds.21560

    Article  PubMed  Google Scholar 

  36. Savica R, Carlin JM, Grossardt BR et al (2009) Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology 73:1752–1758. https://doi.org/10.1212/WNL.0b013e3181c34af5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) A prospective study of bowel movement frequency and risk of Parkinson’s disease. Am J Epidemiol 174:546–551. https://doi.org/10.1093/aje/kwr119

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin C-H, Lin J-W, Liu Y-C et al (2014) Risk of Parkinson’s disease following severe constipation: a nationwide population-based cohort study. Parkinsonism Relat Disord 20:1371–1375. https://doi.org/10.1016/j.parkreldis.2014.09.026

    Article  PubMed  Google Scholar 

  39. Cersosimo MG, Raina GB, Pecci C et al (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260:1332–1338. https://doi.org/10.1007/s00415-012-6801-2

    Article  CAS  PubMed  Google Scholar 

  40. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain J Neurol 114(Pt 5):2283–2301. https://doi.org/10.1093/brain/114.5.2283

    Article  Google Scholar 

  41. Morrish PK, Rakshi JS, Bailey DL et al (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64:314–319. https://doi.org/10.1136/jnnp.64.3.314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Powers KM, Smith-Weller T, Franklin GM et al (2006) Diabetes, smoking, and other medical conditions in relation to Parkinson’s disease risk. Parkinsonism Relat Disord 12:185–189. https://doi.org/10.1016/j.parkreldis.2005.09.004

    Article  PubMed  Google Scholar 

  43. Giulio Scigliano, Massimo Musicco, Paola Soliveri et al (2006) Reduced risk factors for vascular disorders in Parkinson disease patients. Stroke 37:1184–1188. https://doi.org/10.1161/01.STR.0000217384.03237.9c

    Article  Google Scholar 

  44. Miyake Y, Tanaka K, Fukushima W et al (2010) Case–control study of risk of Parkinson’s disease in relation to hypertension, hypercholesterolemia, and diabetes in Japan. J Neurol Sci 293:82–86. https://doi.org/10.1016/j.jns.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  45. Guttman M, Slaughter PM, Theriault M-E et al (2004) Parkinsonism in Ontario: comorbidity associated with hospitalization in a large cohort. Mov Disord 19:49–53. https://doi.org/10.1002/mds.10648

    Article  PubMed  Google Scholar 

  46. Kareus SA, Figueroa KP, Cannon-Albright LA, Pulst SM (2012) Shared predispositions of parkinsonism and cancer: a population-based pedigree-linked study. Arch Neurol 69:1572–1577. https://doi.org/10.1001/archneurol.2012.2261

    Article  PubMed  Google Scholar 

  47. Peretz C, Gurel R, Rozani V et al (2016) Cancer incidence among Parkinson’s disease patients in a 10-years time-window around disease onset: a large-scale cohort study. Parkinsonism Relat Disord 28:68–72. https://doi.org/10.1016/j.parkreldis.2016.04.028

    Article  PubMed  Google Scholar 

  48. Lin P-Y, Chang S-N, Hsiao T-H et al (2015) Association between parkinson disease and risk of cancer in Taiwan. JAMA Oncol 1:633–640. https://doi.org/10.1001/jamaoncol.2015.1752

    Article  PubMed  Google Scholar 

  49. Wirdefeldt K, Weibull CE, Chen H et al (2014) Parkinson’s disease and cancer: a register-based family study. Am J Epidemiol 179:85–94. https://doi.org/10.1093/aje/kwt232

    Article  PubMed  Google Scholar 

  50. Svensson E, Horváth-Puhó E, Thomsen RW et al (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78:522–529. https://doi.org/10.1002/ana.24448

    Article  PubMed  Google Scholar 

  51. Liu B, Fang F, Pedersen NL et al (2017) Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88:1996–2002

    Article  PubMed  PubMed Central  Google Scholar 

  52. Svensson E, Horváth-Puhó E, Stokholm MG et al (2016) Appendectomy and risk of Parkinson’s disease: a nationwide cohort study with more than 10 years of follow-up. Mov Disord 31:1918–1922. https://doi.org/10.1002/mds.26761

    Article  PubMed  Google Scholar 

  53. Gray MT, Munoz DG, Gray DA et al (2014) Alpha-synuclein in the appendiceal mucosa of neurologically intact subjects. Mov Disord 29:991–998. https://doi.org/10.1002/mds.25779

    Article  CAS  PubMed  Google Scholar 

  54. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. https://doi.org/10.1038/nrn3346

    Article  CAS  PubMed  Google Scholar 

  55. Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401. https://doi.org/10.1053/j.gastro.2013.02.0431394–1401.e1

    Article  CAS  PubMed  Google Scholar 

  56. Heijtz RD, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed Central  Google Scholar 

  57. Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609.e3. https://doi.org/10.1053/j.gastro.2011.04.052

    Article  CAS  PubMed  Google Scholar 

  58. Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  59. Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  PubMed  Google Scholar 

  60. Gabrielli M, Bonazzi P, Scarpellini E et al (2011) Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 26:889–892. https://doi.org/10.1002/mds.23566

    Article  PubMed  Google Scholar 

  61. Rana SV, Bhardwaj SB (2008) Small intestinal bacterial overgrowth. Scand J Gastroenterol 43:1030–1037. https://doi.org/10.1080/00365520801947074

    Article  CAS  PubMed  Google Scholar 

  62. Tan AH, Mahadeva S, Thalha AM et al (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20:535–540. https://doi.org/10.1016/j.parkreldis.2014.02.019

    Article  PubMed  Google Scholar 

  63. Fasano A, Bove F, Gabrielli M et al (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28:1241–1249. https://doi.org/10.1002/mds.25522

    Article  CAS  PubMed  Google Scholar 

  64. Rao SSC, Tan G, Abdulla H et al (2018) Does colectomy predispose to small intestinal bacterial (SIBO) and fungal overgrowth (SIFO)? Clin Transl Gastroenterol 9:146. https://doi.org/10.1038/s41424-018-0011-x

    Article  PubMed  PubMed Central  Google Scholar 

  65. van Minnen LP, Nieuwenhuijs VB, de Bruijn MT et al (2006) Effects of subtotal colectomy on bacterial translocation during experimental acute pancreatitis. Pancreas 32:110–114

    Article  PubMed  Google Scholar 

  66. Hughes AJ, Daniel SE, Lees AJ (2001) Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 57:1497–1499

    Article  CAS  PubMed  Google Scholar 

  67. Rajput AH, Rozdilsky B, Rajput A (1991) Accuracy of clinical diagnosis in parkinsonism—a prospective study. Can J Neurol Sci J Can Sci Neurol 18:275–278

    Article  CAS  Google Scholar 

  68. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184. https://doi.org/10.1136/jnnp.55.3.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870. https://doi.org/10.1093/brain/awf080

    Article  PubMed  Google Scholar 

  70. Joutsa J, Gardberg M, Röyttä M, Kaasinen V (2014) Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat Disord 20:840–844. https://doi.org/10.1016/j.parkreldis.2014.04.019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y-JK, S-YL, and S-HL. Data curation: Y-JK, C-ML, and S-HL. Formal analysis: Y-JK, C-ML, and S-HL. Investigation: Y-JK, C-ML, S-YL, and S-HL. Methodology: Y-JK, SK, J-WJ, and S-HL. Project administration: Y-JK and S-HL. Resources: Y-JK and S-HL. Software: Y-JK and C-ML. Supervision: Y-JK and S-HL. Validation: SK, J-WJ, S-YL, and S-HL. Writing: original draft: Y-JK, C-ML, and S-HL. Writing, review and editing: Y-JK, SK, J-WJ, S-YL, and S-HL.

Corresponding author

Correspondence to Seung-Hwan Lee.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of Kangwon National University Hospital (KNUH-2018-06-004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Lee, CM., Kim, S. et al. Risk of Parkinson’s disease after colectomy: longitudinal follow-up study using a national sample cohort. J Neurol 267, 513–521 (2020). https://doi.org/10.1007/s00415-019-09617-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09617-1

Keywords

Navigation