Skip to main content

Advertisement

Log in

Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Clinical deterioration of relapsing–remitting MS (RR-MS) patients reflects not only the number and severity of overt inflammatory and demyelinating episodes, but also subtle central damage caused by persistent exposure to inflammatory molecules.

Objective

To explore the correlation between levels of CSF inflammatory molecules at the time of diagnosis and both demographic and clinical characteristics of a large sample of RR-MS patients, as well as the predictive value of cytokine levels on their prospective disease course.

Methods

In 205 patients diagnosed with RR-MS, we measured at the time of diagnosis the CSF levels of inflammatory molecules. Clinical and MRI evaluation was collected at the time of CSF withdrawal and during a median follow-up of 3 years.

Results

The time interval between the first anamnestic episode of focal neurological dysfunction and RR-MS diagnosis was the main factor associated with high CSF levels of IL-6 and IL-8. Furthermore, elevated CSF levels of these cytokines correlated with enhanced risk of clinical and radiological disease reactivation, switch to second-line treatments, and with disability progression in the follow-up.

Conclusions

Delayed diagnosis and treatment initiation are associated with higher CSF levels of IL-6 and IL-8 in RR-MS, leading to worsening disease course and poor response to treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303. https://doi.org/10.1093/brain/awm291

    Article  PubMed  Google Scholar 

  2. Linker RA, Sendtner M, Gold R (2005) Mechanisms of axonal degeneration in EAE lessons from CNTF and MHC I knockout mice. J Neurol Sci 233:167–172. https://doi.org/10.1016/j.jns.2005.03.021

    Article  CAS  PubMed  Google Scholar 

  3. Dihb-Jalbut S, Arnold DL, Cleveland DW et al (2006) Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 176:198–215

    Article  Google Scholar 

  4. Maimone D, Gregory S, Arnason BG, Reder AT (1991) Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J Neuroimmunol 32:67–74

    Article  CAS  Google Scholar 

  5. Matejčíková Z, Mareš J, Sládková V et al (2017) Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin. Mult Scler Relat Disord 14:12–15. https://doi.org/10.1016/j.msard.2017.03.007

    Article  PubMed  Google Scholar 

  6. Kothur K, Wienholt L, Brilot F, Dale RC (2016) CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine 7:227–237. https://doi.org/10.1016/j.cyto.2015.10.001

    Article  CAS  Google Scholar 

  7. Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104. https://doi.org/10.1093/brain/awm038

    Article  PubMed  Google Scholar 

  8. Rossi S, Motta C, Studer V et al (2014) Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 20:304–312. https://doi.org/10.1177/1352458513498128

    Article  CAS  PubMed  Google Scholar 

  9. Rossi S, Studer V, Motta C et al (2014) Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation 11:32. https://doi.org/10.1186/1742-2094-11-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi S, Motta C, Studer V et al (2015) Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult Scler 21:1443–1452. https://doi.org/10.1177/1352458514564482

    Article  CAS  PubMed  Google Scholar 

  11. Centonze D, Muzio L, Rossi S et al (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452. https://doi.org/10.1523/JNEUROSCI.5804-08.2009

    Article  CAS  PubMed  Google Scholar 

  12. Mandolesi G, Musella A, Gentile A et al (2013) Interleukin–1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 33:12105–12121. https://doi.org/10.1523/JNEUROSCI.5369-12.2013

    Article  CAS  PubMed  Google Scholar 

  13. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol 69:292–302. https://doi.org/10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  Google Scholar 

  15. Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Investig 117:1119–1127. https://doi.org/10.1172/JCI31720

    Article  CAS  PubMed  Google Scholar 

  16. Bielekova B, Komori M, Xu Q et al (2012) Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation. PLoS One 7:e48370. https://doi.org/10.1371/journal.pone.0048370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishizu T, Osoegawa M, Mei FJ et al (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128:988–1002. https://doi.org/10.1093/brain/awh453

    Article  PubMed  Google Scholar 

  18. Maimone D, Guazzi GC, Annunziata P (1997) IL-6 detection in multiple sclerosis brain. J Neurol Sci 146:59–65

    Article  CAS  Google Scholar 

  19. Matsushita T, Tateishi T, Isobe N et al (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One 8:e61835. https://doi.org/10.1371/journal.pone.0061835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimura A, Takemura M, Saito K et al (2017) Increased cerebrospinal fluid progranulin correlates with interleukin-6 in the acute phase of neuromyelitis optica spectrum disorder. J Neuroimmunol 305:175–181. https://doi.org/10.1016/j.jneuroim.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  21. Stelmasiak Z, Kozioł-Montewka M, Dobosz B et al (2000) Interleukin-6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Med Sci Monit 6:1104–1108

    CAS  PubMed  Google Scholar 

  22. Jacobs LD, Beck RW, Simon JH et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904. https://doi.org/10.1056/NEJM200009283431301

    Article  CAS  PubMed  Google Scholar 

  23. Comi G, Filippi M, Barkhof F et al (2001) Early Treatment of Multiple Sclerosis Study Group. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582

    Article  CAS  Google Scholar 

  24. Kappos L, Polman CH, Freedman MS et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249. https://doi.org/10.1212/01.wnl.0000237641.33768.8d

    Article  CAS  PubMed  Google Scholar 

  25. Kappos L, Freedman MS, Polman CH et al (2009) Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol 8:987–997. https://doi.org/10.1016/S1474-4422(09)70237-6

    Article  CAS  PubMed  Google Scholar 

  26. Kappos L, Edan G, Freedman MS et al (2016) The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology 87:978–987. https://doi.org/10.1212/WNL.0000000000003078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rossi S, Furlan R, De Chiara V et al (2012) Interleukin–1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71:76–83. https://doi.org/10.1002/ana.22512

    Article  CAS  PubMed  Google Scholar 

  28. Stampanoni Bassi M, Mori F, Buttari F et al (2017) Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 128:1148–1157. https://doi.org/10.1016/j.clinph.2017.04.006

    Article  PubMed  Google Scholar 

  29. Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170. https://doi.org/10.1016/S1474-4422(06)70349-0

    Article  PubMed  Google Scholar 

  30. Fox NC, Jenkins R, Leary SM et al (2000) Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI. Neurology 54:807–812

    Article  CAS  Google Scholar 

  31. Simon HJ, Jacobs LD, Campion MK et al (1999) A longitudinal study of brain atrophy in relapsing multiple sclerosis. Neurology 53:139–148

    Article  CAS  Google Scholar 

  32. De Stefano N, Airas L, Grigoriadis N et al (2014) Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 28:147–156. https://doi.org/10.1007/s40263-014-0140-z

    Article  PubMed  Google Scholar 

  33. Skrzipek S, Vogelgesang A, Bröker BM, Dressel A (2012) Differential effects of interferon-β1b on cytokine patterns of CD4 + and CD8 + T cells derived from RRMS and PPMS patients. Mult Scler 18:674–678. https://doi.org/10.1177/1352458511427317

    Article  CAS  PubMed  Google Scholar 

  34. Gentile A, Musella A, Bullitta S et al (2016) Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 13:207. https://doi.org/10.1186/s12974-016-0686-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gentile A, Musella A, De Vito F et al (2018) Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation 15:5. https://doi.org/10.1186/s12974-017-1048-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thompson AJ, Banwell BL, Barkhof F et al (2017) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Italian Ministry of Health (Ricerca Corrente), and by the 5 × 1000 grant to IRCCS Neuromed.

Author information

Authors and Affiliations

Authors

Contributions

MSB: conception and design of the study, drafting a significant portion of the manuscript or figures. EI: conception and design of the study, drafting a significant portion of the manuscript or figures. DL: acquisition and analysis of data. FM: acquisition and analysis of data. LG: acquisition and analysis of data. IS: statistical analysis of data. AM: acquisition and analysis of data. GM: acquisition and analysis of data. FV: acquisition and analysis of data. RF: analysis of data. AF: analysis of data. GAM: acquisition and analysis of data. DC: conception and design of the study, drafting a significant portion of the manuscript or figures. FB: conception and design of the study, drafting a significant portion of the manuscript or figures.

Corresponding author

Correspondence to Diego Centonze.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stampanoni Bassi, M., Iezzi, E., Landi, D. et al. Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J Neurol 265, 2540–2547 (2018). https://doi.org/10.1007/s00415-018-8994-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8994-5

Keywords

Navigation