Skip to main content
Log in

The diagnostic value of biexponential apparent diffusion coefficients in myopathy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm2 was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lovitt S, Moore SL, Marden FA (2006) The use of MRI in the evaluation of myopathy. Clin Neurophysiol 117(3):486–495

    Article  PubMed  Google Scholar 

  2. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362(9388):971–982

    Article  CAS  PubMed  Google Scholar 

  3. Distad BJ, Amato AA, Weiss MD (2011) Inflammatory myopathies. Curr Treat Options Neurol 13(2):119–130

    Article  PubMed  Google Scholar 

  4. Angelini C (2010) State of the art in muscle glycogenoses. Acta Myol 2010:339–342

    Google Scholar 

  5. Mundy H, Lee PJ (2004) The glycogen storage diseases. Curr Paediatr 14(5):407–413

    Article  Google Scholar 

  6. Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJ, Kunkel LM (2015) The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet 16:281–308

    Article  CAS  PubMed  Google Scholar 

  7. Yogesh K, Vibhor W, Lauren P, Parham P, Avneesh C (2016) MR imaging of skeletal muscle signal alterations: systematic approach to evaluation. Eur J Radiol 85:922–935

    Article  Google Scholar 

  8. Bihan DLTR, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159:591–599

    Article  PubMed  Google Scholar 

  9. Bihan DLBE, Lallemand D, Aubin ML et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  10. Yao L, Yip AL, Shrader JA, et al. Magnetic resonance measurement of muscle T2, fat-corrected T2 and fat fraction in the assessment of idiopathic inflammatory myopathies. Rheumatology. 2015

  11. Tuor UIKP, Del Bigio MR, Ramjiawan B et al (1997) Diffusion- and T2-weighted increases in magnetic resonance images of immature brain during hypoxia-ischemia: transient reversal posthypoxia. Exp Neurol 150:321–328

    Article  Google Scholar 

  12. Yanagisawa O, Shimao D, Maruyama K, Nielsen M, Irie T, Niitsu M (2009) Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient. Magn Reson Imaging 27(1):69–78

    Article  PubMed  Google Scholar 

  13. Qi J, Olsen NJ, Price RR, Winston JA, Park JH (2008) Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 27(1):212–217

    Article  PubMed  Google Scholar 

  14. Maier SE, Bogner P, Bajzik GMH et al (2001) Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 219:842–849

    Article  CAS  PubMed  Google Scholar 

  15. Robertson RLB-SL, Barnes PD, Mulkern RV et al (1999) MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. Am J Neuroradiol 20:1658–1670

    CAS  PubMed  Google Scholar 

  16. Schwarcz A, Ursprung Z, Berente Z et al (2007) In vivo brain edema classification: new insight offered by large b-value diffusion-weighted MR imaging. J Magn Reson Imaging 25(1):26–31

    Article  PubMed  Google Scholar 

  17. Steier R, Aradi M, Pal J et al (2012) A biexponential DWI study in rat brain intracellular oedema. Eur J Radiol 81(8):1758–1765

    Article  PubMed  Google Scholar 

  18. Sehy JV, Ackerman JJ, Neil JJ (2002) Apparent diffusion of water, ions, and small molecules in the Xenopus oocyte is consistent with Brownian displacement. Magn Reson Med 48(1):42–51

    Article  CAS  PubMed  Google Scholar 

  19. Mulkern RVZH, Robertson RL, Bogner P et al (2000) Multi-component apparent diffusion coefficients in human brain: relationship to spin-lattice relaxation. Magn Reson Med 44:292–300

    Article  CAS  PubMed  Google Scholar 

  20. Chandarana HLV, Hecht E, Taouli B et al (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions. Invest Radiol 46(5):285–291

    PubMed  Google Scholar 

  21. Zul PCMC, Faustino P, Pekar J et al (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Biophysics 88:3228–3232

    Google Scholar 

  22. Bihan DLBE, Lallemand D, Aubin ML et al (1998) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  Google Scholar 

  23. In DM (1995) Vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Resonance Imaging 13(2):193–199

    Article  Google Scholar 

  24. Marden FACA, Siegel MJ, Rubin DA (2004) Compositional analysis of muscle in boys with duchenne muscular dystrophy using MR imaging. Skeletal Radiol 2005(34):140–148

    Google Scholar 

  25. Bertini E, D’Amico A, Gualandi F, Petrini S (2011) Congenital muscular dystrophies: a brief review. Semin Pediatr Neurol 18(4):277–288

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shin YS (2006) Glycogen storage disease: clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol 13(2):115–120

    Article  PubMed  Google Scholar 

  27. Cleveland GGCD, Hazlewood CF, Rorschach HE (1976) Nuclear magnetic resonance measurement of skeletal muscle. Biophys J 16:1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gershen LD, Prayson BE, Prayson RA (2015) Pathological characteristics of glycogen storage disease III in skeletal muscle. J clin Neurosci 22(10):1674–1675

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Peng W, Zhou L, Wang H (2013) Biexponential apparent diffusion coefficients values in the prostate: comparison among normal tissue, prostate cancer, benign prostatic hyperplasia and prostatitis. Korean J Radiol 14(2):222–232

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu C, Liang C, Liu Z, Zhang S, Huang B (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82(12):e782–e789

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the projects from National Scientific foundation of China (NSFC, No. 81320108013, 81571643 & 31170899).  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors decalare that this study compliance with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, J., Liu, Y., Sun, D. et al. The diagnostic value of biexponential apparent diffusion coefficients in myopathy. J Neurol 263, 1296–1302 (2016). https://doi.org/10.1007/s00415-016-8139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8139-7

Keywords

Navigation